Materials Transactions Online

Materials Transactions, Vol.57 No.10 (2016) pp.1837-1844
© 2016 The Japan Institute of Metals and Materials

Mobility of Twin Boundaries in Fe-Pd-Based Ferromagnetic Shape Memory Alloys

Federico Guillermo Bonifacich1, Osvaldo Agustín Lambri1, José Ignacio Pérez-Landazábal2, 3, Damián Gargicevich1, Vicente Recarte2, 3 and Vicente Sánchez-Alarcos2, 3

1CONICET-UNR, Laboratorio de Materiales, Escuela de Ingeniería Eléctrica, Centro de Tecnología e Investigación Eléctrica, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Avda. Pellegrini 250, (2000) Rosario, Argentina
2Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain
3Institute for Advanced Materials (INAMAT), Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain

The mobility of twin boundaries in (at.%) Fe70Pd30, Fe67Pd30Co3 and Fe66.8Pd30.7Mn2.5 has been studied by mechanical spectroscopy. Measurements were carried out in amplitude dependent damping regime. A new model based on the Friedel theory was developed to obtain the activation energy (~2 kJ/mol) for twin boundaries motion. The model describes the amplitude dependent damping from thermally assisted break-away of dislocations. Interaction processes among twin boundaries, dislocations and vacancies during the recovery of the structure are also discussed. Moreover, a damping peak related to a dislocation dragging mechanism controlled by vacancies migration without break-away, earlier reported in Fe-Pd alloys, was also found in Fe-Pd-Co and Fe-Pd-Mn alloys.


(Received 2016/07/01; Accepted 2016/07/27; Published 2016/09/25)

Keywords: iron-palladium based alloys, ferromagnetic shape memory alloys, martensitic transformation, twin boundary, damping

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. M. Sugiyama, R. Oshima and F.E. Fujita: Trans. JIM 19 (1984) 585-592.
  2. M. Sugiyama, R. Oshima and F.E. Fujita: Trans. JIM 27 (1986) 719-730.
  3. R.D. James and M. Wuttig: Philos. Mag. A 77 (1998) 1273-1299.
  4. T. Kakeshita, T. Fukuda and T. Takeuchi: Mater. Sci. Eng. A 438-440 (2006) 12-17.
  5. V. Sánchez-Alarcos, J.I. Pérez-Landazábal and V. Recarte: Mater. Sci. Forum 635 (2010) 103-110.
  6. D. C. Lagoudas (ed): Shape Memory Alloys, Modeling and Engineering Applications (Springer, New York, 2007).
  7. V.G. Gavriljuk, O. Söderberg, V.V. Bliznuk, N.I. Glavatska and V.K. Lindroos: Scr. Mater. 49 (2003) 803-809.
  8. E. Cesari, S. Kustov, S. Golyandin, K. Sapozhnikov and J. Van Humbeeck: Mater. Sci. Eng. A 438-440 (2006) 369-373.
  9. E. Cesari, V.A. Chernenko, V.V. Kokorin, J. Pons and C. Segui: Acta Mater. 45 (1997) 999-1004.
  10. V.A. Chernenko, C. Segui, E. Cesari, J. Pons and V.V. Kokorin: Phys. Rev. B 57 (1998) 2659-2662.
  11. S. Kustov and J. Van Humbeeck: Mater. Sci. Forum 583 (2008) 85-109.
  12. S. Kustov, S. Golyandin, K. Sapozhnikov, E. Cesari, J. Van Humbeeck and R. De Batist: Acta Mater. 50 (2002) 3023-3044.
  13. J.I. Pérez-Landazábal, O.A. Lambri, F.G. Bonifacich, V. Sánchez-Alarcos, V. Recarte and F. Tarditti: Acta Mater. 86 (2015) 110-117.
  14. R. De Batist: Mechanical spectroscopy, ed. by E. Lifshin: Characterization of Materials ed. by R. W. Cahn, P. Haasen and E. J. Kramer: Materials Science and Technology, 2B, Part II (VCH, Weinheim, 1991).
  15. J. Van Humbeeck: High damping capacity due to microstructural interfaces ed. by B.B. Rath and M.S. Misra: Role of Interfaces on Materials Damping (Proc. ASM's Materials Week and TMS/AIME Fall Meeting, Toronto, 1985).
  16. A. Granato and K. Lücke: J. Appl. Phys. 27 (1956) 583-593.
  17. R. Schaller, G. Fantozzi and G. Gremaud (Eds): Mechanical Spectroscopy (Trans Tech. Publ Ltd, Switzeland, 2001).
  18. K. Suzuki, N. Nakanishi and H. Mitani: J. Japan Inst. Metals 44 (1980) 43-50.
  19. F. Yin, K. Nagai, K. Watanabe and K. Kawahara: Mater. Trans. 44 (2003) 1671-1674.
  20. F. Yin, T. Sakaguchi, Q. Tian, A. Sakurai and K. Nagai: Mater. Trans. 46 (2005) 2164-2168.
  21. A. S. Nowick and B.S. Berry: Anelastic Relaxation in Crystalline Solids (Academic Press, New York, 1972).
  22. J. Friedel: Dislocations (Addison-Wesley, Reading, 1967).
  23. D.H. Niblett and J. Wilks: Adv. Phys. 9 (1960) 1-88.
  24. C. Zener: Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, 1956).
  25. O. A. Lambri: A review on the problem of measuring nonlinear damping and the obtainment of intrinsic damping ed. by J. Martinez-Mardones, D. Walgraef and C. H. Wörner: Materials Instabilities (World Scientific Publishing, New York, 2000).
  26. B.J. Molinas, O.A. Lambri and M. Weller: J. Alloy. Compd. 211-212 (1994) 181-184.
  27. G.I. Zelada-Lambri, O.A. Lambri and J.A. García: J. Nucl. Mater. 353 (2006) 127-134.
  28. K. Iwasaki: J. Phys. E Sci. Instrum. 16 (1983) 421-426.
  29. G. I. Zelada, Mecanismos de Interacción Dislocaciones-Defectos Puntuales en Molibdeno a Temperaturas entre 300 K - 1300 K (0;3 TF) (Ph.D. Thesis, Universidad Nacional de Rosario, Argentina, 2008).
  30. B. J. Lazan: Damping of Materials and Members in Structural Mechanics (Pergamon, London, 1968).
  31. C. T. Wang: Applied Elasticity (McGraw-Hill, New York, 1953).
  32. V. Sánchez-Alarcos, V. Recarte, J.I. Pérez-Landazábal, M.A. González and J.A. Rodríguez-Velamazán: Acta Mater. 57 (2009) 4224-4232.
  33. V. Sánchez-Alarcos, V. Recarte, J.I. Pérez-Landazábal, C. Gómez-Polo, V.A. Chernenko and M.A. González: Eur. Phys. J. Spec. Top. 158 (2008) 107-112.
  34. F. Xiao, T. Fukuda, T. Kakeshita, M. Jin and X. Jin: J. Alloy. Compd. 649 (2015) 211-215.
  35. B. D. Cullity: Introduction to Magnetic Materials (Addison-Wesley Publishing Company, London, 1972).
  36. R. M. Bozorth: Ferromagnetism (Van Nostrand Company, New York, 1951).
  37. K. Ullakko: J. Mater. Eng. Perform. 5 (1996) 405-409.
  38. R. W. Cahn and P. Haasen: Physical Metallurgy (North-Holland, Amsterdam, 1983).
  39. T. W. Duerig, K. N. Melton, D. Stöckel and C. M. Wayman: Engineering Aspects of Shape Memory Alloys (Butterworth-Heinemann Ltd, London, 1990).
  40. K. Otsuka and C. M. Wayman (eds.): Shape Memory Materials (Cambridge University Press, Cambridge, 1998).
  41. M. Weller, J. Diehl and W. Trifshäuser: Solid State Commun. 17 (1975) 1223-1226.
  42. I.G. Ritchie, J.F. Dufresne and P. Moser: Phys. Status Solidi 61 (1980) 591-600 (a).
  43. G. Fantozzi and I.G. Ritchie: J de Phys. 42(C5) (1981) C5-3-C5-23.
  44. G.E. Rieu: Acta Metall. 26 (1978) 1-13.
  45. M. Mongy: Nuovo Cim. 8 (1972) 247-255.
  46. A. Seeger: Philos. Mag. Lett. 83 (2003) 107-115.
  47. M. Weller, J. Diehl and W. Mensch: Phys. Status Solidi 60 (1980) 93-101 (a).
  48. W. Frank, A. Seeger and M. Weller: Radiat. Eff. 55 (1981) 111-118.
  49. H.M. Simpson and A. Sosin: Phys. Rev. B 5 (1972) 1382-1393.
  50. H.M. Simpson and A. Sosin: Phys. Rev. B 16 (1977) 1489-1494.


© 2016 The Japan Institute of Metals and Materials
Comments to us :