Materials Transactions Online

Materials Transactions, Vol.57 No.10 (2016) pp.1816-1822
© 2016 The Japan Institute of Metals and Materials

Formation of Al-Ni Intermetallic Layers Lining Microchannels Produced by Powder-Metallurgical Process Using Aluminum Sacrificial Cores

Tatsuya Ohmi1 and Naoya Hayashi1

1Division of Materials Science, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan

The mechanism of in-situ formation of Al-Ni intermetallic lining layers during microchannel formation in nickel bodies by a powder-metallurgical process has been investigated. Aluminum wire was used as a sacrificial core that gives the shape of the microchannel and supplies the alloying element for the lining layer. Nickel powder compacts with 29(±1)% porosity containing aluminum wires were heated from room temperature and then quenched at various temperatures between 873 K and 1473 K. Porous intermetallic lining layers were clearly recognized at temperatures above 1073 K. Each lining layer was built up from an outward-growing layer and an inward-growing layer. Change in the voidage in the outward-growing layer during heat treatment and the formation of a high-voidage zone around the lining layer were accounted for in terms of phase equilibria and unequal diffusion rates of the alloy elements in the Al-Ni intermetallic compounds and nickel solid solution.


(Received 2016/06/03; Accepted 2016/08/10; Published 2016/09/25)

Keywords: microchannel device, microchannel heat exchanger, microreactor, microchannel lining, microporous structure, intermetallic compound, nickel aluminide, powder metallurgy, unequal diffusion rates, Kirkendall voids

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. E.V. Rebrov, G.B.F. Seijger, H.P.A. Calis, M.H.J.M. de Croon, C.M. van den Bleek and J.C. Schouten: Appl. Catal. A Gen. 206 (2001) 125-143.
  2. E.V. Rebrov, M.H.J.M. de Croon and J.C. Schouten: Catal. Today 69 (2001) 183-192.
  3. G. Kolb and V. Hessel: Chem. Eng. J. 98 (2004) 1-38.
  4. P. Pfeifer, K. Schubert, M.A. Liauw and G. Emig: Appl. Catal. A Gen. 270 (2004) 165-175.
  5. I. Aartun, T. Gjervan, H. Venvik, O. Görke, P. Pfeifer, M. Fathi, A. Holmen and K. Schubert: Chem. Eng. J. 101 (2004) 93-99.
  6. G. Chen, Q. Yuan, H. Li and S. Li: Chem. Eng. J. 101 (2004) 101-106.
  7. L. Kiwi-Minsker and A. Renken: Catal. Today 110 (2005) 2-14.
  8. I. Aartun, B. Silberova, H. Venvik, P. Pfeifer, O. Görke, K. Schubert and A. Holmen: Catal. Today 105 (2005) 469-478.
  9. G.-G. Park, S.-D. Yim, Y.-G. Yoon, W.-Y. Lee, C.-S. Kim, D.-J. Seo and K. Eguchi: J. Power Sources 145 (2005) 702-706.
  10. X. Yu, S.-T. Tu, Z. Wang and Y. Qi: Chem. Eng. J. 116 (2006) 123-132.
  11. W. Cai, F. Wang, A. van Veen, C. Descorme, Y. Schuurman, W. Shen and C. Mirodatos: Int. J. Hydrogen Energ. 35 (2010) 1152-1159.
  12. K.-S. Lin, C.-Y. Pan, S. Chowdhury, W. Lu and C.-T. Yeh: Thin Solid Films 519 (2011) 4681-4686.
  13. N.R. Peela and D. Kunzru: Int. J. Hydrogen Energ. 36 (2011) 3384-3396.
  14. J. Richard Phillips: Advances in Thermal Modeling of Electric Components and Systems Vol. 2, ed. by A. Bar-Cohen and A. D. Kraus (ASME, New York, 1990) pp. 109-184.
  15. I. Papautsky, A. B. Frazier and H. Swerdlow: Proc. MEMS'97 (IEEE, 1997) pp. 317-322.
  16. D. Deng, Y. Tang, D. Liang, H. He and S. Yang: Int. J. Heat Mass Transfer 70 (2014) 463-477.
  17. P.-f. Bai, Z.-c. Yi, B. Tang and G.-f. Zhou: Trans. Nonferrous Met. Soc. China 24 (2014) 900-906.
  18. D. Deng, R. Chen, Y. Tang, L. Lu, T. Zeng and W. Wan: Int. J. Multiph. Flow 72 (2015) 275-287.
  19. M. Hakamada, Y. Asao, T. Kuromura, Y. Chen, H. Kusuda and M. Mabuchi: Scr. Mater. 56 (2007) 781-783.
  20. A.J. Neurohr and D.C. Dunand: Acta Biomater. 7 (2011) 1862-1872.
  21. A.J. Neurohr and D.C. Dunand: Acta Mater. 59 (2011) 4616-4630.
  22. T. Kimura and H. Hamamoto: Int. J. Powder Metallurgy 10 (1974) 105-108.
  23. T. Ohmi, K. Matsuura and M. Kudoh: Int. J. Self-Propagating High-Temperature Synthesis 13 (2004) 121-129.
  24. T. Ohmi, M. Sakurai, K. Matsuura, M. Kudoh and M. Iguchi: Int. J. Transport Phenomena 9 (2007) 105-111.
  25. T. Ohmi, N. Hayashi and M. Iguchi: Mater. Trans. 49 (2008) 2723-2727.
  26. R. Darolia: JOM 43 (1991) 44-49.
  27. H. Okamoto: J. Phase Equilib. 14 (1993) 257-259.
  28. L. Farber, I. Gotman and E.Y. Gutmanas: Defect and Diffusion Forum 143-147 (1997) 643-648.
  29. A. Hibino: J. Jpn. Inst. Metals 57 (1993) 767-773.
  30. M.M.P. Janssen and G.D. Rieck: Trans. Metall. AIME 239 (1967) 1372-1385.
  31. J.C. Liu, J.W. Mayer and J.C. Barbour: J. Appl. Phys. 64 (1988) 656-662.
  32. A. Paul, A.A. Kodentsov and F.J.J. van Loo: J. Alloy. Compd. 403 (2005) 147-153.
  33. M. Watanabe, Z. Horita, D.J. Smith and M.C. McCartney: Acta Metall. Mater. 143-147 (1997) 637-642.
  34. M. Watanabe, Z. Horita and M. Nemoto: Defect and Diffusion Forum 143-147 (1997) 345-350.
  35. M. Watanabe, Z. Horita and M. Nemoto: Defect and Diffusion Forum 143-147 (1997) 637-642.


© 2016 The Japan Institute of Metals and Materials
Comments to us :