Materials Transactions Online

Materials Transactions, Vol.57 No.10 (2016) pp.1794-1800
© 2016 Journal of Japan Institute of Copper

Characteristics of Hypoeutectic Cu-Zr Alloy Rods Manufactured by Vertically Upwards Continuous Casting

Naokuni Muramatsu1 and Masaaki Akaiwa1

1New Metals Division, NGK Insulators, Ltd., Handa 475-0825, Japan

This study applied a vertically upwards continuous casting (VUCC) mass-production method to the pilot-scale production of hypoeutectic Cu-xZr (x = 0.25-5 at%) alloy rods. The microstructures of these VUCC rods were investigated and compared with those of rods produced by copper mold casting (CMC). In addition, the wire-drawing ability of the VUCC rods was examined, and the adaptability of the VUCC method to the mass production of hypoeutectic Cu-Zr alloys was fully investigated. The results show that VUCC provides a higher rate of cooling than CMC, with the resulting dendritic microstructure expected to contribute to its arm-spacing refinement. Furthermore, the VUCC rods exhibit good wire-drawing ability. The ultimate tensile strength, total strain to fracture, and electrical conductivity of Cu-2.5Zr (at%) alloy wires with diameter of 13.8 μm drawn from a VUCC rod are 1882 ± 28 MPa, 2.2 ± 0.2%, and 21% IACS (i.e. 21% of the International Annealed Copper Standard conductivity of annealed copper), respectively. The results suggest that VUCC has good potential to be adapted for mass production of hypoeutectic Cu-Zr alloy rods.

This Paper was Originally Published in Japanese in J. Japan Inst. Copper 54 (2015) 179-184.

[doi:10.2320/matertrans.M2016181]

(Received 2016/05/19; Accepted 2016/07/14; Published 2016/09/25)

Keywords: copper-zirconium alloys, hypoeutectic phase, vertically upwards continuous casting, wire drawing, mechanical properties, electrical conductivity

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. P.D. Funkenbusch, T.H. Courtney and D.G. Kubisch: Scr. Metall. 18 (1984) 1099-1104.
  2. K. Hasegawa, K. Mihara, T. Eguchi, I. Takahashi and T. Miyoshi: Journal of the Japan Copper and Brass Research Association 42 (2003) 296-299.
  3. T. Takeuchi, K. Togano, K. Inoue and H. Maeda: J. Less Common Met. 157 (1990) 25-35.
  4. K. Adachi, S. Tsubokawa, T. Takeuchi and H.G. Suzuki: J. Japan Inst. Metals 61 (1997) 397-403.
  5. K. Mihara, T. Takeuchi and H.G. Suzuki: J. Japan Inst. Metals 62 (1998) 238-245.
  6. P.D. Funkenbusch, T.H. Courtney and D.G. Kubisch: Scr. Metall. 15 (1981) 1349-1354.
  7. J. Bevk, J.P. Harbison and J.L. Bell: J. Appl. Phys. 49 (1978) 6031-6038.
  8. R.M. Vennett, S.M. Wolf and A.P. Levitt: Metall. Trans. 1 (1970) 1569-1575.
  9. C. Schoene and E. Scala: Metall. Trans. 1 (1970) 3466-3469.
  10. K. Yamaji: Journal of JSTP 5 (1964) 711-724.
  11. G. Frommeyer and G. Wassermann: Acta Metall. 23 (1975) 1353-1360.
  12. Y. Sakai, K. Inoue, T. Asano and H. Maeda: J. Japan Inst. Metals 55 (1991) 1382-1391.
  13. Y. Sakai, K. Inoue, T. Asano, H. Wada and H. Maeda: Appl. Phys. Lett. 59 (1991) 2965-2967.
  14. Y. Sakai and H.-J. Schneider-Muntau: Acta Mater. 45 (1997) 1017-1023.
  15. H. Matsui, T. Ichikawa, S. Aoyama and R. Okada: Journal of the Japan Copper and Brass Research Association 41 (2002) 233-236.
  16. K. Hasegawa, K. Mihara, T. Eguchi, I. Takahashi and T. Miyoshi: Journal of the Japan Copper and Brass Research Association 42 (2003) 296-299.
  17. N. Muramatsu, N. Ogawa, H. Kimura and A. Inoue: Journal of the Japan Copper and Brass Research Association 49 (2010) 67-72.
  18. N. Muramatsu, H. Kimura and A. Inoue: Mater. Trans. 53 (2012) 1062-1068.
  19. N. Muramatsu, H. Kimura and A. Inoue: Journal of the Japan Copper and Brass Research Association 50 (2011) 199-203.
  20. N. Muramatsu, H. Kimura and A. Inoue: Mater. Trans. 54 (2013) 176-183.
  21. S. Yamasaki: Journal of JSTP 52 (2011) 311-315.
  22. M.K. Mihovsky, V.B. Hadzhiyski and R.V. Gavrilova: The Scientific Journal of the Society for Structural Integrity and Life 10 (2010) 117-124.
  23. R.V. Gavrilova, V.B. Hadzhiyski and M.K. Mihovsky: The Scientific Journal of the Society for Structural Integrity and Life 10 (2010) 219-223.
  24. N. Muramatsu, H. Kimura and A. Inoue: Ultra-high strength and high electrical conductivity characteristics of wires produced by drawing of rapidly solidified CuZr binary alloys, in Proceedings of IWCC Technical Seminar, Barcelona, Spain, March 2009.
  25. D. Arias and J.P. Abriata: Bulletin. Alloy Phase Diagrams 11 (1990) 452-459.
  26. K. Simizu, Y. Nakatani, E. Okuda and B. Terashita: Journal of the Japan Copper and Brass Research Association 7 (1968) 126-134.
  27. R.E. Spear and G.R. Gardner: Mod. Cast. 43 (1963) 209-215.


[JIM HOME] [JOURNAL ARCHIVES]

© 2016 Journal of Japan Institute of Copper
Comments to us : editjt@jim.or.jp