Materials Transactions Online

Materials Transactions, Vol.57 No.10 (2016) pp.1747-1752
© 2016 The Japan Institute of Metals and Materials

Salicylic Acid Complex Imprinted Polymer Membranes: Preparation and Separation Characteristics

Yan Dong1, Lifang He1, Xiahong Zhang1 and Xiurong Jiang1

1College of Chemistry & Materials Science, Longyan University, Longyan, Fujian 364012, China

Salicylic acid complex imprinted polymeric membranes have been prepared by thermal polymerization using polyvinilidene fluoride membrane as a support membrane, acrylamide as a functional monomer and ethylene glycol dimethacrylate as a crosslinker. The imprinted membranes are characterized by Fourier Transform Infrared Spectrometer (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). It can be found that the structure of imprinted membranes is different from the supporting membrane, and the surface of the supporting membrane is covered with an imprinted polymer layer after polymerization. Adsorption and permeation binding experiments indicate that imprinted membranes show high specific binding capacity of template molecule, the selectivity factor of the imprinted membrane for the salicylic acid was 26.4, The optimum polymerization condition is 0.3 mmol salicylic acid, 1.2 mmol acrylamide and 6.0 mmol ethylene glycol dimethacrylate in acetonitrile at 60℃ for 24 h.


(Received 2016/04/12; Accepted 2016/07/28; Published 2016/09/25)

Keywords: molecularly imprinted membranes, salicylic acid, polyvinilidene fluoride membranes, acrylamide, separation techniques

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. G. Vlatakis, L.I. Andersson, R. Muller and K. Mosbach: Nature 361 (1993) 645-647.
  2. S.A. Piletsky, T.L. Panasyuk, E.V. Piletskaya, I.A. Nicholls and M. Ulbricht: J. Membr. Sci. 157 (1999) 263-278.
  3. P.A. Lieberzeit and F.L. Dickert: Anal. Bioanal. Chem. 391 (2008) 1629-1639.
  4. A. Rachkov, S. McNiven, A. El'skaya, K. Yano and I. Karube: Anal. Chim. Acta 405 (2000) 23-29.
  5. Q.L. Deng, Z.H. Lun, R.Y. Gao, L.H. Zhang, W.B. Zhang and Y.K. Zhang: Electrophoresis 27 (2006) 4351-4358.
  6. S.H. Son and J. Jegal: J. Appl. Polym. Sci. 104 (2007) 1866-1872.
  7. S.A. Zaidi and W.J. Cheong: J. Sep. Sci. 31 (2008) 2962-2970.
  8. F. Liu, C.H. Du, B.K. Zhu and Y.Y. Xu: Polymer 48 (2007) 2910-2918.
  9. H.Y. Liu, K.H. Row and G.L. Yan: Chromatographia 61 (2005) 429-432.
  10. S.A. Piletsky, H. Matuschewski, U. Schedler, A. Wilpert, E.V. Piletska, T.A. Thiele and M. Ulbricht: Macromolecules 33 (2000) 3092-3098.
  11. T.A. Sergeyeva, S.A. Piletsky, A.A. Brovko, L.A. Slinchenko, L.M. Sergeeva and A.V. El'skaya: Anal. Chim. Acta 392 (1999) 105-111.
  12. T.A. Sergeyeva, H. Matuschewski, S.A. Piletsky, J. Bendig, U. Schedler and M. Ulbricht: J. Chromatogr. A 907 (2001) 89-99.
  13. S.A. Piletsky, I.Y. Dubei, D.M. Fedoryak and V.P. Kukhar: Biopolymers Cell 6 (1990) 55-58.
  14. D. Silvestri, C. Borrelli, P. Giusti, C. Cristallini and G. Ciardelli: Anal. Chim. Acta 542 (2005) 3-13.
  15. J.M. Hong, P.E. Anderson, J. Qian and C.R. Martin: Chem. Mater. 10 (1998) 1029-1033.
  16. C.H. Zhang, F.Y. Hu, H.B. Zhang, H. Li and S.Z. Yao: Acta Chimi. Sin. 67 (2009) 2121-2126.
  17. L. Donato, M.C. Greco and E. Drioli: Desal&Wat. Treat. 30 (2011) 171-177.
  18. M.Y. Hao, X.L. Hu, P. Guan and F. Yang: Polym. Bull. 6 (2007) 8-14.
  19. X.J. Shi, B.J. Gao and X.L. Zhao: Acta Polymerica Sinica. 8 (2013) 1047-1056.
  20. J.H. Gao: J. Shandong Ag. Admini. College. 1 (2011) 162-168.
  21. X.J. Wang, Z.L. Xu, N.C. Bing and Z.G. Yang: J. Appl. Polym. Sci. 109 (2008) 64-73.
  22. Y.H. Zhai, Y.W. Liu, X.J. Chang, X.F. Ruan and J.L. Liu: React. Funct. Polym. 68 (2008) 284-291.


© 2016 The Japan Institute of Metals and Materials
Comments to us :