Materials Transactions Online

Materials Transactions, Vol.57 No.10 (2016) pp.1691-1697
© 2016 The Japan Institute of Metals and Materials

Enhanced Ductility of In Situ Synthesized (TiB+La2O3)/IMI834 Composite by TRIPLEX Heat Treatment

Jiuxiao Li1, Yuanfei Han1, Liqiang Wang1, Liangyu Chen1 and Weijie Lu1

1State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China

The effects of a new TRIPLEX heat treatment on the microstructure and the mechanical properties of in situ synthesized (TiB+La2O3)/IMI834 composite (TMCs) were studied. The microstructures and the morphology of reinforcements after heat treatment were characterized by optical microscopy, scanning electron microscopy (SEM), electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). The martensite variation was in situ observed in the processing of TRIPLEX heat treatment by confocal laser scanning microscope (CLSM). The results showed that the microstructure of specimens after TRIPLEX heat treatment exhibits laminar structure with high aspect ratio. The percent of low angle boundaries of TMCs treated by TRIPLEX heat treatment and β heat treatment is about 22.71% and 25.32%, respectively. Compared with β heat treatment, the ductility of titanium matrix composites after TRIPLEX heat treatment was improved significantly. Tiny perpendicular cracks on TiB reinforcement and the crack initiating in matrix were in situ observed at the same time by CLSM during tensile test.


(Received 2015/07/02; Accepted 2016/01/07; Published 2016/09/25)

Keywords: titanium matrix composite, reinforcements, heat treatment, microstructure, tensile properties

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. H. K. S. Rahoma, Y. Y. Chen, X. P. Wang and S. L. Xiao: J. Alloy. Compd. 627 (2015) 415-422.
  2. B.-J. Choi, I.-Y. Kim, Y.-Z. Lee and Y.-J. Kim: Wear. 318 (2014) 68-77.
  3. V. Imayev, R. Gaisin, E. Gaisina, R. Imayev, H.-J. Fecht and F. Pyczak: Mater. Sci. Eng. A 609 (2014) 34-41.
  4. M. Moradi, M. Moazeni and H. Reza Salimijazi: Vacuum. 107 (2014) 34-40.
  5. J. X. Li, L. Q. Wang, J. N. Qin, Y. F. Chen, W. J. Lu and D. Zhang: Mater. Trans. 9 (2011) 1728-1733.
  6. J. X. Li, L. Q. Wang, J. N. Qin, Y. F. Chen, W. J. Lu and D. Zhang: Mater. Charact. 66 (2012) 93-98.
  7. X. D. Zhang, D. J. Evans, W. A. Baeslack and H. L. Fraser: Mater. Sci. Eng. A 344 (2003) 300-311.
  8. H. R. Phelps, J. R. Wood, F. H. Froes and I. L. Caplan (Eds.): Titanium’92: Science and Technology, vol. 1, (1992) pp. 193-200.
  9. X. D. Zhang, P. Bonniwell, H. L. Fraser, W. A. Baeslack, D. J. Evans, T. Ginter, T. Bayha and B. Cornell: Mater. Sci. Eng. A 343 (2003) 210-226.
  10. J. X. Li, L. Q. Wang, J. N. Qin, Y. F. Chen, W. J. Lu and D. Zhang: Mater. Sci. Eng. A 527 (2010) 5811-5817.
  11. W. J. Lu, D. Zhang, X. N. Zhang and R. J. Wu: Scr. Mater. 44 (2001) 1069-1075.
  12. X. N. Zhang, W. J. Lu, D. Zhang and R. J. Wu: Scr. Mater. 41 (1999) 39-46.
  13. T. S. Srivatsan, W. O. Soboyejo and R. J. Lederich: Compos. Part A 28 (1997) 365-376.
  14. M. Fery and P. T. Munroe: Mater. Sci. Tech. 11 (1995) 633-641.
  15. M. Niinomi and T. Kobayashi: Mater. Sci. Eng. A 213 (1996) 16-24.
  16. C. J. Boehlert, S. Tamirisakandala, W. A. Curtinc and D. B. Miracled: Scr. Mater. 61 (2009) 245-248.
  17. L. Xiao, W. J. Lu, J. N. Qin and D. Zhang: J. Mater. Res. 11 (2008) 3066-3074.
  18. L. Xiao, W. J. Lu, Z. F. Yang, J. N. Qin, D. Zhang, M. M. Wang, F. Zhu and B. Ji: Mater. Sci. Eng. A 491 (2008) 192-198.


© 2016 The Japan Institute of Metals and Materials
Comments to us :