Materials Transactions Online

Materials Transactions, Vol.55 No.12 (2014) pp.1895-1899
© 2014 The Japan Institute of Metals and Materials

Synthesis and Characterization of Mesoporous Silica from Anorthite-Clay Mineral: Role of Mechanical Activation

Junhyun Choi1, Yosep Han1, Donghyun Kim1, Soyeon Park1, Jayhyun Park2, Jaikoo Park3 and Hyunjung Kim1

1Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 556-756, Republic of Korea
2R&D Team, Institute of Mine Reclamation Corporation, Coal Center, 30 Chungjin-dong, Jongno-gu, Seoul 110-727, Republic of Korea
3Department of Natural Resources and Environmental Engineering, Hangyang University, 17 Heangdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea

Mesoporous silica was prepared from anorthite-clay via mechanical activation (i.e., grinding) and selective acid leaching method. The pore characteristics of the mesoporous silica with different grinding time and acid treatment time were systematically characterized and compared with those prepared via heat treatment followed by acid treatment. Particle size, X-ray diffraction (XRD), BET surface area, thermal gravity (TG), and solubility analyses were carried out to characterize the samples. The XRD results showed that grinding and heat treatment dramatically altered the crystal structure of the samples, resulting in the change in weight loss curves of the corresponding samples from TG analysis. The results for pore size distribution of the prepared samples revealed that acid-treatment led to significant changes in the pore structure of the samples while grinding and heat-treatment without acid-treatment showed negligible influence on the pore structure. More specifically, acid-treatment increased the specific surface area of the ground and heat-treated samples regardless of acid-treatment. Furthermore, solubility tests for anorthite-clay samples showed that there is a positive relationship between the solubility of anorthite-clay and the specific surface area of mesoporous silica, indicating that the increase in the specific surface area of mesoporous silica was attributed to the increase in the solubility of anorthite-clay.

(Received 2014/08/14; Accepted 2014/10/03; Published 2014/11/25)

Keywords: anorthite-clay, mechanical activation, mesoporous silica, pore characteristics

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. R. O. Ajemba and O. D. Onukwuli: Physicochem. Probl. Miner. Process. 50 (2014) 349-358.
  2. Y. Jiang, H. Ruan, S. Lai, C. Lee, C. Yu, Z. Wu, X. Chen and S. He: Earth Sci. 2 (2013) 40-46.
  3. Y. Liu, Y. Kang, B. Mu and A. Wang: Chem. Eng. J. 237 (2014) 403-410.
  4. H. H. Murray: Appl. Clay Sci. 5 (1991) 379-395.
  5. C. Viseras, C. Aguzzi, P. Cerezo and A. Lopez-Galindo: Appl. Clay Sci. 36 (2007) 37-50.
  6. J. Gamelas, E. Ferraz and F. Rocha: Colloid. Surface. A 455 (2014) 49-57.
  7. S. Gregg, T. Parker and M. J. Stephens: J. Appl. Chem. 4 (1954) 666-674.
  8. J. Hlavay, K. Jonas, S. Elek and J. Inczedy: Clay. Clay Miner. 25 (1977) 451-456.
  9. W. P. Kelley and H. Jenny: Soil Sci. 41 (1936) 367-382.
  10. W. D. Laws and J. Page: Soil Sci. 62 (1946) 310-336.
  11. K. R. Marra, G. S. Soreghan, M. E. Elwood Madden, L. J. Keiser and B. L. Hall: Geomorphology 206 (2014) 483-491.
  12. J. G. Miller and T. D. Oulton: Clay. Clay Miner. 18 (1970) 313-323.
  13. H. Takahashi: B. Chem. Soc. Jpn. 32 (1959) 235-245.
  14. A. K. Chakraborty: Phase Transformation of Kaolinite Clay, (Springer, 2014).
  15. S. Mohammadnejad, J. L. Provis and J. S. van Deventer: Miner. Eng. 52 (2013) 31-37.
  16. M. Valaskova, K. Barabaszova, M. Hundakova, M. Ritz and E. Plevova: Appl. Clay Sci. 54 (2011) 70-76.
  17. R. L. Frost, E. Horvath, E. Mako and J. Kristof: J. Colloid Interf. Sci. 270 (2004) 337-346.
  18. E. Horvath, R. L. Frost, E. Mako, J. Kristof and T. Cseh: Thermochim. Acta 404 (2003) 227-234.
  19. E. Kristof, A. Z. Juhasz and I. Vassanyi: Clay. Clay Miner. 41 (1993) 608-612.
  20. J. Kristof, R. L. Frost, J. T. Kloprogge, E. Horvath and E. Mako: J. Therm. Anal. Calorim. 69 (2002) 77-83.
  21. E. Mako, R. L. Frost, J. Kristof and E. Horvath: J. Colloid Interf. Sci. 244 (2001) 359-364.
  22. M. Ebinger and D. Schulze: Clay. Clay Miner. 37 (1989) 151-156.
  23. R. E. Grim: Clay Mineralogy, 2nd ed., (McGraw-Hill, Inc., New York, 1968).
  24. M. G. Stapleton, D. L. Sparks and S. K. Dentel: Environ. Sci. Technol. 28 (1994) 2330-2335.
  25. S. J. Traina, G. Sposito, D. Hesterberg and U. Kafkafi: Soil Sci. Soc. Am. J. 50 (1986) 45-52.
  26. K. Okada, A. Shimai, T. Takei, S. Hayashi, A. Yasumori and K. J. D. MacKenzie: Micropor. Mesopor. Mat. 21 (1998) 289-296.
  27. J. Temuujin, G. Burmaa, J. Amgalan, K. Okada, T. Jadambaa and K. J. D. MacKenzie: J. Porous Mat. 8 (2001) 233-238.
  28. E. F. Aglietti, J. M. P. Lopez and E. Pereira: Int. J. Miner. Process. 16 (1986) 125-133.
  29. J. Park, J. Park and H. Shin: Mater. Lett. 61 (2007) 156-159.
  30. Y. Han, H. Kim, J. Park, S. Lee and J. Kim: Int. J. Hydrogen Energy 37 (2012) 14240-14247.
  31. Y. Han, J. Choi, M. Tong and H. Kim: Mater. Charact. 90 (2014) 31-39.
  32. Y. Han, G. Hwang, D. Kim, S. Park and H. Kim: J. Hazard. Mater. 283 (2015) 44-52.
  33. H. Misran, R. Singh, S. Begum and M. A. Yarmo: J. Mater. Process. Technol. 186 (2007) 8-13.
  34. M. Gomez-Cazalilla, J. Merida-Robles, A. Gurbani, E. Rodriguez-Castellon and A. Jimenez-Lopez: J. Solid State Chem. 180 (2007) 1130-1140.
  35. P. Kumar, N. Mal, Y. Oumi, K. Yamana and T. Sano: J. Mater. Chem. 11 (2001) 3285-3290.
  36. M. I. Mahadi and S. Palaniandy: Int. J. Miner. Process. 94 (2010) 172-179.
  37. L. Peng, W. Qisui, L. Xi and Z. Chaocan: Colloid. Surf. A 334 (2009) 112-115.
  38. Q. Cheng, Z. Cui, J. Li, S. Qin, F. Yan and J. Li: J. Power Sources 266 (2014) 401-413.
  39. S. A. Kim and L. A. Archer: Macromolecules 47 (2014) 687-694.


© 2014 The Japan Institute of Metals and Materials
Comments to us :