Materials Transactions Online

Materials Transactions, Vol.55 No.12 (2014) pp.1859-1866
© 2014 The Japan Institute of Metals and Materials

Strategy for Electrodeposition of Highly Ductile Bulk Nanocrystalline Metals with a Face-Centered Cubic Structure

Isao Matsui1, 2, Yorinobu Takigawa1, Daisaku Yokoe3, Takeharu Kato3, Tokuteru Uesugi1 and Kenji Higashi1

1Department of Materials Science, Osaka Prefecture University, Sakai 599-8531, Japan
2Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology, Nagoya 463-8560, Japan
3Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan

A strategy for producing highly ductile electrodeposited bulk nanocrystalline metals with face-centered cubic structures was developed in a Ni-W alloy model system. Bulk nanocrystalline Ni-W alloys with similar grain size (20-30 nm), and varying crystallographic orientations were produced. The electrodeposited alloys showed tensile elongation ranging between 0 and 13%. Scanning ion microscopy reveled that all electrodeposited alloys had similar meso-scale structures that are typical of electrodeposited metals. This indicated the variation of ductility and fracture surfaces was not caused by cluster structures filled with nano-grains. The tensile behavior of the bulk nanocrystalline Ni-W alloys could be explained by considering the effects of growth processes during electrodeposition on the presence of hydrogen and defects. Our discussion surrounding Ni-W alloys outlines the conditions necessary to obtain the high tensile ductility. Our findings are in good agreement with those for other electrodeposited nanocrystalline face-centered cubic metals. We also provide guidelines for selecting electrodeposition conditions to produce bulk nanocrystalline metals with face-centered cubic structures and high tensile ductility.

(Received 2014/07/24; Accepted 2014/09/16; Published 2014/11/25)

Keywords: nanocrystalline metal, electrodeposition, nickel-tungsten alloys, growth mode, meso-scale structure

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. M. A. Meyers, A. Mishra and D. J. Benson: Prog. Mater. Sci. 51 (2006) 427-556.
  2. M. Dao, L. Lu, R. Asaro, J. Dehosson and E. Ma: Acta Mater. 55 (2007) 4041-4065.
  3. U. Erb, K. T. Aust and G. Palumbo: Nanostructured Materials: Processing, Properties and Applications, ed. by C. C. Koch, (William Andrew, Inc., Norwich, N.Y., 2007) pp. 235-292.
  4. I. Matsui, Y. Takigawa, T. Uesugi and K. Higashi: Mater. Lett. 65 (2011) 2351-2353.
  5. I. Matsui, T. Kawakatsu, Y. Takigawa, T. Uesugi and K. Higashi: Mater. Lett. 116 (2014) 71-74.
  6. H. Wei, G. D. Hibbard, G. Palumbo and U. Erb: Scr. Mater. 57 (2007) 996-999.
  7. G. J. Fan, L. F. Fu, H. Choo, P. K. Liaw and N. D. Browning: Acta Mater. 54 (2006) 4781-4792.
  8. H. Li and F. Ebrahimi: Acta Mater. 54 (2006) 2877-2886.
  9. A. M. El-Sherik, U. Erb, G. Palumbo and K. T. Aust: Scr. Metall. Mater. 27 (1992) 1185-1188.
  10. C. Cheung, F. Djuanda, U. Erb and G. Palumbo: Nanostruct. Mater. 5 (1995) 513-523.
  11. D. Wu, J. Zhang, J. C. Huang, H. Bei and T. G. Nieh: Scr. Mater. 68 (2013) 118-121.
  12. Y. Zhou, U. Erb, K. T. Aust and G. Palumbo: Scr. Mater. 48 (2003) 825-830.
  13. I. Matsui, T. Uesugi, Y. Takigawa and K. Higashi: Acta Mater. 61 (2013) 3360-3369.
  14. C. A. Schuh, T. G. Nieh and H. Iwasaki: Acta Mater. 51 (2003) 431-443.
  15. N. Wang, Z. Wang, K. T. Aust and U. Erb: Mater. Sci. Eng. A 237 (1997) 150-158.
  16. T. Yamasaki: Scr. Mater. 44 (2001) 1497-1502.
  17. H. Iwasaki, K. Higashi and T. G. Nieh: Scr. Mater. 50 (2004) 395-399.
  18. A. Giga, Y. Kimoto, Y. Takigawa and K. Higashi: Scr. Mater. 55 (2006) 143-146.
  19. E. Ma: Scr. Mater. 49 (2003) 663-668.
  20. C. C. Koch, K. M. Youssef, R. O. Scattergood and K. L. Murty: Adv. Eng. Mater. 7 (2005) 787-794.
  21. C. C. Koch, I. A. Ovid’ko, S. Seal and S. Veprek: Structural Nanocrystalline Materials: Fundamentals and Applications, (Cambridge University Press, Cambridge, 2007).
  22. I. Brooks, G. Palumbo, G. D. Hibbard, Z. R. Wang and U. Erb: J. Mater. Sci. 46 (2011) 7713-7724.
  23. I. Matsui, Y. Takigawa, T. Uesugi and K. Higashi: Microelectron. Eng. 91 (2012) 98-101.
  24. I. Matsui, Y. Takigawa, T. Uesugi and K. Higashi: Mater. Lett. 99 (2013) 65-67.
  25. I. Matsui, Y. Takigawa, T. Uesugi and K. Higashi: Mater. Sci. Eng. A 578 (2013) 318-322.
  26. J. Amblard, I. Epelboin, M. Froment and G. Maurin: J. Appl. Electrochem. 9 (1979) 233-242.
  27. H. D. Merchant: Defect Structure, Morphology and Properties of Deposits, ed. by H. D. Merchant, (Metals and Materials Soc., Minerals, 1995) pp. 1-59.
  28. S. Ruan and C. A. Schuh: Scr. Mater. 59 (2008) 1218-1221.
  29. T. G. Nieh and J. G. Wang: Intermetallics 13 (2005) 377-385.
  30. I. Matsui, H. Mori, T. Kawakatsu, Y. Takigawa, T. Uesugi and K. Higashi: Mater. Sci. Eng. A 607 (2014) 505-510.
  31. Y. M. Wang, S. Cheng, Q. M. Wei, E. Ma, T. G. Nieh and A. Hamza: Scr. Mater. 51 (2004) 1023-1028.
  32. Y. Wu, D. Chang, D. Kim and S.-C. Kwon: Surf. Coat. Technol. 173 (2003) 259-264.
  33. I. Mizushima, P. T. Tang, H. N. Hansen and M. A. J. Somers: Electrochim. Acta 51 (2006) 6128-6134.
  34. K. R. Sriraman, S. G. S. Raman and S. K. Seshadri: Mater. Sci. Eng. A 418 (2006) 303-311.
  35. K.-H. Hou, Y.-F. Chang, S.-M. Chang and C.-H. Chang: Thin Solid Films 518 (2010) 7535-7540.
  36. W. H. Safranek: The Properties of Electrodeposited Metals and Alloys: a Handbook, AESF, Orlando, FL, (1986).
  37. Y. Miura, S. Yokota, Y. Fukai and T. Watanabe: Mater. Trans. 46 (2005) 963-968.
  38. B. Y. C. Wu, P. J. Ferreira and C. A. Schuh: Metall. Mater. Trans. A 36 (2005) 1927-1936.
  39. M. R. Barnett, P. Cizek, M. Nave, A. Sullivan and R. Balasubramaniam: Scr. Mater. 60 (2009) 603-606.
  40. P. Cizek, M. R. Barnett, M. D. Nave, E. F. Rauch and R. Balasubramaniam: Metall. Mater. Trans. A 42 (2011) 2048-2060.
  41. W. T. Geng, A. J. Freeman, R. Wu, C. B. Geller and J. E. Raynolds: Phys. Rev. B 60 (1999) 7149-7155.
  42. I. Matsui, H. Iwami, Y. Takigawa, T. Uesugi and K. Higashi: J. Surf. Finish. Soc. Jpn. 62 (2011) 686-690.
  43. I. Matsui, Y. Takigawa and K. Higashi: Adv. Mater. Res. 922 (2014) 497-502.
  44. C. D. Gu, J. S. Lian, Q. Jiang and W. T. Zheng: J. Phys. D: Appl. Phys. 40 (2007) 7440-7446.
  45. C. Gu, J. Lian, Q. Jiang and Z. Jiang: Mater. Sci. Eng. A 459 (2007) 75-81.
  46. H. Zhang, Z. Jiang and Y. Qiang: Mater. Sci. Eng. A 517 (2009) 316-320.
  47. I. Matsui, Y. Hanaoka, S. Ono, Y. Takigawa, T. Uesugi and K. Higashi: Mater. Lett. 109 (2013) 229-232.
  48. J.-X. Kang, W.-Z. Zhao and G.-F. Zhang: Surf. Coat. Technol. 203 (2009) 1815-1818.
  49. A. J. Bard and L. R. Faulkner: Electrochemical Methods: Fundamentals and Applications, (Wiley, New York, 1980).
  50. M. Matsumiya, M. Terazono and K. Tokuraku: Electrochim. Acta 51 (2006) 1178-1183.


© 2014 The Japan Institute of Metals and Materials
Comments to us :