Materials Transactions Online

Materials Transactions, Vol.55 No.12 (2014) pp.1816-1819
© 2014 The Japan Institute of Metals and Materials

Calculation of Thermodynamic Properties of Cu-Ce Binary Alloy and Precipitation Behavior of Cu6Ce Phase

Haihong Li, Xueqin Sun and Shangzhou Zhang

School of Environment and Materials Engineering, Yantai University, Yantai 264005, P. R. China

The mixing enthalpy (ΔH), the excess entropy (SEAB), the excess Gibbs free-energy (GEAB) and the component activities (a) of Cu-Ce binary alloy system were calculated based on Miedema’s model and some general thermodynamic relations. Results showed that the values of ΔH, SEAB, and GEAB of Cu-Ce binary alloy in 1555 K were all negative in the whole range concentration. The activities of Cu and Ce had negative deviation from Raoult’s Law, which indicated that there was a strong interaction between Cu and Ce. The calculation results of the mixing enthalpies and the activities of Cu and Ce agreed well with the experimental results. Cu6Ce phase precipitation behavior in thermodynamics and dynamics were also discussed. Furthermore, combining the experiment, the existence of Cu6Ce phase particles was observed using scanning electron microscopy (SEM) and energy dispersion spectrometry (EDS).

(Received 2014/09/01; Accepted 2014/09/17; Published 2014/11/25)

Keywords: Miedema’s model, thermodynamic properties, copper, cerium, Cu6Ce

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. K. Chandra, V. Kain, P. S. Shetty and R. Kishan: Eng. Fail. Anal. 37 (2014) 1-11.
  2. J. L. Chen, Z. Li, A. Y. Zhu, L. Y. Luo and J. Liang: Mater. Des. 34 (2012) 618-623.
  3. L. M. Wang, Q. Lin, L. J. Yue, L. Liu, F. Guo and F. M. Wang: J. Alloy. Compd. 451 (2008) 534-537.
  4. S. M. Jo, K. C. Park, B. H. Kim, H. Kimura, S. K. Park and Y. H. Park: Mater. Trans. 52 (2011) 1088-1095.
  5. We. J. Liu, F. H. Cao, L. R. Chang, Z. Zhang and J. Q. Zhang: Corros. Sci. 51 (2009) 1334-1343.
  6. M. Hakamada, A. Watazu, N. Saito and H. Iwasaki: Mater. Trans. 49 (2008) 1032-1037.
  7. C. C. Jain and C. H. Koo: Mater. Trans. 48 (2007) 265-272.
  8. J. H. Zhang, Z. Leng, S. J. Liu, M. L. Zhang, J. Meng and R. Z. Wu: J. Alloy. Compd. 509 (2011) L187-L193.
  9. S. J. Zhou, B. J. Zhao, Z. Zhao and X. Jin: J. Rare Earth. 24 (2006) 385-388.
  10. Z. F. Zhang, G. Y. Lin, S. H. Zhang and J. Zhou: Mater. Sci. Eng. A 457 (2007) 313-318.
  11. D. P. Lu, J. Wang, L. Lu, Y. Liu, S. F. Xie and B. D. Sun: J. Rare Earth. 24 (2006) 602-606.
  12. R. F. Zhang, S. H. Sheng and B. X. Liu: Chem. Phys. Lett. 442 (2007) 511-514.
  13. A. K. Niessen, F. R. de Boer, R. Boom, P. F. de Châtel, W. C. M. Mattens and A. R. Miedema: Calphad 7 (1983) 51-70.
  14. W. C. Wang, J. H. Li and H. F. Yan: Scr. Mater. 56 (2007) 975-978.
  15. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema and A. K. Niessen: Cohesion in Metals, (North-Holland, Amsterdam, 1988) pp. 13-24.
  16. T. Tanaka, N. Gokcen and Z. Morita: Z. Metallkd. 81 (1990) 49-54.
  17. J. L. Wang: J. Rare Earth. 10 (1996) 125-130 (in Chinese).
  18. W. Zhuang, Z. Y. Qiao, S. Wei and J. Shen: J. Phase Equilib. 17 (1996) 508-521.


© 2014 The Japan Institute of Metals and Materials
Comments to us :