Materials Transactions Online

Materials Transactions, Vol.55 No.12 (2014) pp.1781-1785
© 2014 The Japan Institute of Metals and Materials

Interfacial Structure of Erbium Oxide Layer on SUS316 Substrate Formed by MOCVD Method

Takayuki Shinkawa1, Kenji Matsuda2, Yoshimitsu Hishinuma3, Katsuhiko Nishimura2, Teruya Tanaka3, Takeo Muroga3 and Takahiro Sato4

1Graduate School of Science and Engineering for Education, University of Toyama, Toyama 930-8555, Japan
2Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555, Japan
3National Institute of Fusion Science, Toki 509-5292, Japan
4Hitachi High-Technologies Corporation, Hitachinaka 312-0057, Japan

The Er2O3 layer fabricated by MOCVD method on SUS316 substrates before and after hydrogen permeation test were investigated to know their surface morphology and structure by SEM and TEM. The surface morphology of this layer was granular structure with size of about 0.3-0.6 µm in diameter. According to the cross sectional TEM (X-TEM) observation, the Er2O3 layer with 1-1.3 µm thickness was formed on SUS316 substrate by MOCVD method in this research and no remarkable defects or cracks were detected. The Er2O3 layer had the columnar structure and their mean width was 0.3-0.5 µm, and it is also in good agreement with mean width of a single column measured by TEM observation. The growth direction of Er2O3 column was 〈110〉Er2O3, which is the same with as each sample before and after hydrogen permeation test, it strongly suggested that the Er2O3 is a better candidate material for insulating coating of a liquid lithium blanket.

(Received 2014/08/06; Accepted 2014/09/24; Published 2014/11/25)

Keywords: Erbium oxide, metal organic chemical vapor deposition (MOCVD), microstructure, hydrogen permeation test, advanced breeding blanket system

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. S. Tanaka, Y. Ohara and H. Kawamura: Fusion Eng. Des. 51-52 (2009) 299-307.
  2. S. Malang, H. U. Borgstedt, E. H. Farnum, K. Natesan and I. V. Vitkovski: Fusion Eng. Des. 27 (1995) 570-586.
  3. J.-H. Park, T. Domenico, G. Dragel and R. Clark: Fusion Eng. Des. 27 (1995) 682-695.
  4. L. Barleon, V. Casal and L. Lenhart: Fusion Eng. Des. 14 (1991) 401-412.
  5. D. L. Smith, J. Konys, T. Muroga and V. Evtikhin: J. Nucl. Mater. 307-311 (2002) 1314-1322.
  6. B. A. Pint, P. F. Tortorelli, A. Jankowski, J. Hayes, T. Muroga, A. Suzuki, O. I. Yeliseyeva and V. M. Chernov: J. Nucl. Mater. 329-333 (2004) 119-124.
  7. T. Chikada, A. Suzuki, Z. Yao, D. Levchuk, H. Maier, T. Terai and T. Muroga: Fusion Eng. Des. 84 (2009) 590-593.
  8. A. Sawada, A. Suzuki, H. Maier, F. Koch, T. Terai and T. Muroga: Fusion Eng. Des. 75-79 (2005) 737-740.
  9. F. Koch, R. Brill, H. Maier, D. Levchuk, A. Suzuki, T. Muroga and H. Bolt: J. Nucl. Mater. 329-333 (2004) 1403-1406.
  10. Y. Hishinuma, T. Tanaka, T. Tanaka, T. Nagasaka, S. Yoshizawa, Y. Tasaki and T. Muroga: J. Nucl. Mater. 417 (2011) 1214-1217.
  11. Y. Hishinuma, T. Tanaka, T. Tanaka, T. Nagasaka, Y. Tasaki, A. Sagara and T. Muroga: Fusion Eng. Des. 86 (2011) 2530-2533.
  12. Y. Hishinuma, S. Murakami, K. Matsuda, T. Tanaka, Y. Tasaki, T. Nagasaka, A. Sagawa and T. Muroga: Plasma Fusion Res. 7 (2012) 4051271.
  13. Y. Hishinuma, T. Tanaka, T. Tanaka, T. Nagasaka, Y. Tasaki, S. Murakami, K. Matsuda, A. Sagara and T. Muroga: Fusion Sci. Technol. 60 (2011) 1131-1134.
  14. R. Xu, Y. Y. Zhu, S. Chen, F. Xue, Y. L. Fan, X. J. Yang and Z. M. Jiang: J. Cryst. Growth 277 (2005) 496-501.
  15. X. Wang, Y. L. Zhu, M. He, H. B. Lu and X. L. Ma: Acta Mater. 59 (2011) 1644-1650.


[JIM HOME] [JOURNAL ARCHIVES]

© 2014 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp