Materials Transactions Online

Materials Transactions, Vol.54 No.03 (2013) pp.409-411
© 2013 The Japan Institute of Metals

Effect of CaO Addition on Microstructure and Damping Capacity of AM50 Magnesium Alloy

Joong-Hwan Jun

Advanced Fusion Process R&D Group, Korea Institute of Industrial Technology, Incheon 406-840, Korea

The effects of a small amount of CaO addition (0.3 mass%) on the microstructure and damping properties of AM50 casting alloys have been investigated. The added CaO contributes to the formation of an Al2Ca phase but reduces the total amount of compound particles by decreasing the β phase content. The AM50-CaO alloy shows a slightly higher damping level within the strain-amplitude dependent region than does the alloy without CaO. The lower number density of compound particles acting as strong pinning points for dislocations is thought to be responsible for the improvement in the damping capacity.

(Received 2012/09/04; Accepted 2012/12/11; Published 2013/02/25)

Keywords: damping capacity, CaO, AM50, microstructure

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. B. L. Mordike and T. Ebert: Mater. Sci. Eng. A 302 (2001) 37-45.
  2. H. Friedrich and S. Schumann: J. Mater. Proc. Tech. 117 (2001) 276-281.
  3. K. Sugimoto, K. Matsui, T. Okamoto and K. Kishitake: Trans. JIM 16 (1975) 647-656.
  4. K. Sugimoto, K. Niiya, T. Okamoto and K. Kishitake: Trans. JIM 18 (1977) 277-288.
  5. S. H. Ha, J. K. Lee and S. K. Kim: Mater. Trans. 49 (2008) 1081-1083.
  6. J. K. Lee and S. K. Kim: Mater. Trans. 52 (2011) 1483-1488.
  7. J. H. Seo and S. K. Kim: Mater. Sci. Forum 620-622 (2009) 291-294.
  8. H. K. Kim, S. K. Kim and D. H. Kim: J. Kor. Found. Soc. 32 (2012) 44-49.
  9. E. H. Cho, J. H. Jun and Y. J. Kim: Kor. J. Mater. Res. 22 (2012) 499-503.
  10. D. Amberger, P. Eisenlohr and M. Göken: Mater. Sci. Eng. A 510-511 (2009) 398-402.
  11. Q. Wang, W. Chen, X. Zeng, Y. Lu, W. Ding, Y. Zhu and X. Xu: J. Mater. Sci. 36 (2001) 3035-3040.
  12. P. Li, B. Tang and E. G. Kandalova: Mater. Lett. 59 (2005) 671-675.
  13. X. G. Min, Y. S. Sun, F. Xue, W. W. Du and D. Y. Wu: Mater. Chem. Phys. 78 (2003) 88-93.
  14. B. Kondori and R. Mahmudi: Mater. Sci. Eng. A 527 (2010) 2014-2021.
  15. D. Wan, J. Wang, L. Lin, Z. Feng and G. Yang: Physica B 403 (2008) 2438-2442.
  16. S. Chen, X. Dong, R. Ma, L. Zhang, H. Wang and Z. Fsn: Mater. Sci. Eng. A 551 (2012) 87-94.
  17. W. Diqing, W. Jincheng, W. Gaifang, C. Xianyi, L. Lin, F. Zhigang and Y. Gencang: Mater. Sci. Eng. A 494 (2008) 139-142.
  18. A. Granato and K. Lücke: J. Appl. Phys. 27 (1956) 583-593.
  19. A. Granato and K. Lücke: J. Appl. Phys. 27 (1956) 789-805.
  20. J. H. Jun: Collected Abstracts of the 2011 Spring Meeting of the Korean Society for Heat Treatment, (2011) pp. 191-192.
  21. Z. Zhang, X. Zeng and W. Ding: Mater. Sci. Eng. A 392 (2005) 150-155.


[JIM HOME] [JOURNAL ARCHIVES]

© 2013 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp