Materials Transactions Online

Materials Transactions, Vol.54 No.03 (2013) pp.405-408
© 2013 The Japan Institute of Metals

Compression Properties of Al/Al-Si-Cu Alloy Functionally Graded Aluminum Foam Fabricated by Friction Stir Processing Route

Yoshihiko Hangai1, Kousuke Saito1, Takao Utsunomiya2, Soichiro Kitahara3, Osamu Kuwazuru4 and Nobuhiro Yoshikawa5

1Graduate School of Engineering, Gunma University, Kiryu 376-8515, Japan
2Research Organization for Advanced Engineering, Shibaura Institute of Technology, Saitama 337-8570, Japan
3Hokudai Co., Ltd., Abira 059-1434, Japan
4Graduate School of Engineering, University of Fukui, Fukui 910-8507, Japan
5Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan

Functionally graded (FG) aluminum foam containing A1050 pure aluminum and ADC12 aluminum alloy was fabricated. The FG foam has the potential for its location of deformation to be controlled. Moreover, a FG foam with plateau regions and stresses corresponding to those of the uniform A1050 and ADC12 foams was obtained.

(Received 2012/11/08; Accepted 2012/12/14; Published 2013/02/25)

Keywords: cellular materials, functionally graded materials (FGM), friction stir welding

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. L. J. Gibson: Ann. Rev. Mater. Sci. 30 (2000) 191-227.
  2. J. Banhart: Prog. Mater. Sci. 46 (2001) 559-632.
  3. A. Pollien, Y. Conde, L. Pambaguian and A. Mortensen: Mater. Sci. Eng. A 404 (2005) 9-18.
  4. A. H. Brothers and D. C. Dunand: Adv. Eng. Mater. 8 (2006) 805-809.
  5. A. H. Brothers and D. C. Dunand: Mater. Sci. Eng. A 489 (2008) 439-443.
  6. K. Huang, D. H. Yang, S. Y. He and D. P. He: J. Phys. D-Appl. Phys. 44 (2011) 365405.
  7. A. Hassani, A. Habibolahzadeh and H. Bafti: Mater. Des. 40 (2012) 510-515.
  8. S. C. Ferreira, A. Velhinho, R. J. C. Silva and L. A. Rocha: Int. J. Mater. Prod. Technol. 39 (2010) 122-135.
  9. K. Shinagawa: Porous Metals and Metallic Foams, ed. by L. P. Lefebvre, J. Banhart and D. C. Dunand, (Destech Pubns Inc., 2008) pp. 95-98.
  10. R. Suzuki and K. Kitazono: J. Japan Inst. Metals 72 (2008) 758-762.
  11. Y. Hangai, T. Utsunomiya and M. Hasegawa: J. Mater. Process. Technol. 210 (2010) 288-292.
  12. R. S. Mishra and Z. Y. Ma: Mater. Sci. Eng. R-Rep. 50 (2005) 1-78.
  13. Z. Y. Ma: Metall. Mater. Trans. A 39 (2008) 642-658.
  14. Y. Hangai, K. Takahashi, T. Utsunomiya, S. Kitahara, O. Kuwazuru and N. Yoshikawa: Mater. Sci. Eng. A 534 (2012) 716-719.
  15. Y. Hangai, K. Takahashi, R. Yamaguchi, T. Utsunomiya, S. Kitahara, O. Kuwazuru and N. Yoshikawa: Mater. Sci. Eng. A 556 (2012) 678-684.
  16. Y. Hangai, Y. Oba, S. Koyama and T. Utsunomiya: Metall. Mater. Trans. A 42 (2011) 3585-3589.
  17. D. F. Allsop and D. Kennedy: Pressure Diecasting, Part 2, The Technology of the Casting and the Die, (Pergamon Press, Ltd., New York, 1983) pp. 6-7.
  18. W. Walkington: Gas Porosity: A Guide to Correcting the Problems, (North American Die Casting Association, Illinois, 2006).
  19. Y. Hangai, H. Kato, T. Utsunomiya and S. Kitahara: Metall. Mater. Trans. A 41 (2010) 1883-1886.
  20. Y. Hangai, H. Kato, T. Utsunomiya, S. Kitahara, O. Kuwazuru and N. Yoshikawa: Mater. Trans. 53 (2012) 1515-1520.
  21. Y. S. Sato, S. H. C. Park, A. Matsunaga, A. Honda and H. Kokawa: J. Mater. Sci. 40 (2005) 637-642.
  22. J. Q. Su, T. W. Nelson and C. J. Sterling: Scr. Mater. 52 (2005) 135-140.
  23. Y. Hangai, S. Koyama, T. Utsunomiya and M. Hasegawa: J. Japan Inst. Metals 74 (2010) 285-287.
  24. T. Utsunomiya, K. Takahashi, Y. Hangai and S. Kitahara: Mater. Trans. 52 (2011) 1263-1268.
  25. Y. Hangai, S. Maruhashi, S. Kitahara, O. Kuwazuru and N. Yoshikawa: Metall. Mater. Trans. A 40 (2009) 2789-2793.


© 2013 The Japan Institute of Metals
Comments to us :