Materials Transactions Online

Materials Transactions, Vol.54 No.03 (2013) pp.371-379
© 2013 The Japan Institute of Metals

Charpy Impact Value of Sandwich Structural (CFRP/ABS/CFRP) Composites Constructed with Carbon Fiber Reinforced Epoxy Polymer (CFRP) and Acrylonitrile Butadiene Styrene (ABS) Sheets Separately Irradiated by Electron Beam Prior to Lamination

Naoya Tsuchikura, Michael C. Faudree and Yoshitake Nishi

Department of Metallurgical Engineering, Graduate School of Engineering, Tokai University, Hiratsuka 259-1292, Japan

Experimental results showed homogeneous 100 keV-class low voltage electron beam irradiation (HLEBI) prior to lamination assembly (our new method) often improved the Charpy impact values (auc) of the sandwich structural CFRP/ABS/CFRP (carbon fiber reinforced epoxy polymer) and (acrylonitrile butadiene styrene) with low volume fraction of carbon fibers for cost reduction and safety. The auc values at each Pf of CFRP/ABS/CFRP laminated by both high-strength and light structural CFRP plies and ABS core separately irradiated from 0.04 to 0.30 MGy-HLEBI before lamination were mostly higher than that without HLEBI. Although carefulness for aircraft parts would be necessary since higher doses of 0.30 and 0.43 MGy HLEBI applied to the CFRP sheets and ABS core before lamination assembly reduced the lowest impact value at Pf = 0 (as) calculated by 3-parameter Weibull equation, the low dose of 0.04 MGy-HLEBI before lamination assembly apparently boosted the as almost 3 times, ∼200%, over the untreated samples from 15 to 44 kJ m−2. Moreover, applying the low dose of 0.04 MGy-HLEBI before instead of after lamination apparently improved the as 76% from 25 to 44 kJ m−2. Furthermore, applying the medium doses of 0.13 MGy or 0.22 MGy HLEBI before rather than after lamination appeared to improve the as remarkably from 0 to 40, and 0 to 42 kJ m−2, respectively. The new method of applying HLEBI prior to lamination allows for more efficient beam contact to the inner core and its surface permitting deeper areas in thick laminated composites such as CFRP/ABS/CFRP to be treated generating dangling bonds, hence strengthening the bulk materials and the CFRP-ABS interface of the thick laminated CFRP/ABS/CFRP constructed with thin or thick surface sheet and thick core can be expected.

(Received 2012/10/15; Accepted 2012/12/19; Published 2013/02/25)

Keywords: sandwich structure, carbon fiber reinforced epoxy polymer (CFRP), epoxy, acrylonitrile butadiene styrene (ABS), Charpy impact test, electron beam irradiation

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. D. K. Thomas: Plastics Rubber Int. 8 (1983) 53-57.
  2. M. B. Dowell: Plastics Eng. 33 (1977) 31-32.
  3. T. Yamamoto, S. Nanba, Y. Ebihara and Y. Nishi: J. Jpn. Inst. Metals 74 (2010) 127-130.
  4. Y. Nishi, N. Tsuchikura, S. Nanba, T. Yamamoto and M. Faudree: Mater. Trans. 53 (2012) 1288-1294.
  5. K. Sonoda, Y. Kaneda, I. K. Nakazaki, Z. Enomoto and K. Murayama: Proc. Symp. on Space Sciences and Technology, (JST No. S0277 A28, 1984).
  6. K. Oguri, N. Iwataka, A. Tonegawa, Y. Hirose, K. Takayama and Y. Nishi: J. Mater. Res. 16 (2001) 553-557.
  7. K. Oguri, K. Fujita, M. Takahashi, Y. Omori, A. Tonegawa, N. Honda, M. Ochi, K. Takayama and Y. Nishi: J. Mater. Res. 13 (1998) 3368-3371.
  8. K. Oguri, N. Iwataka, H. Izumi, A. Tonegawa, K. Takayama and Y. Nishi: Proc. 2nd Japan-France Seminar on Intelligent Materials and Structures, (University of Louis Pasteur Strasbourg, France) (1998) pp. 142-144.
  9. Y. Nishi, A. Mizutani and N. Uchida: J. Thermoplastic Compos. Mater. 17 (2004) 289-302.
  10. Y. Nishi, T. Toriyama, K. Oguri, A. Tonegawa and K. Takayama: J. Mater. Res. 16 (2001) 1632-1635.
  11. Y. Nishi, M. Mizutani, A. Kimura, T. Toriyama, K. Oguri and A. Tonegawa: J. Mater. Sci. 38 (2003) 89-92.
  12. A. Mizutani and Y. Nishi: Mater. Trans. 44 (2003) 1857-1860.
  13. Y. Nishi, K. Inoue and M. Salvia: Mater. Trans. 47 (2006) 2846-2851.
  14. Y. Nishi, T. Yamamoto, S. Namba, H. Takei and K. Iwata: Mater. Trans. 52 (2011) 73-80.
  15. Y. Nishi, M. Uyama, H. Kawazu, H. Takei, K. Iwata, H. Kudoh and K. Mitsubayashi: Mater. Trans. 53 (2012) 1657-1664.
  16. K. Iwata and Y. Nishi: Mater. Trans. 49 (2008) 2058-2062.
  17. K. Iwata and Y. Nishi: Mater. Trans. 51 (2010) 121-127.
  18. ASTM D 6264-98 (1998).
  19. K. Imielińska, L. Guillaumat, R. Wojtyra and M. Castaings: Compos.: Part B 39 (2008) 1034-1041.
  20. A. S. Vaidya, U. K. Vaidya and N. Uddin: Mater. Sci. Eng. A 472 (2008) 52-58.
  21. O. S. David-West, D. H. Nash and W. M. Banks: Compos. Struct. 83 (2008) 247-258.
  22. L. Aktay, A. F. Johnson and M. Holzapfel: Computat. Mater. Sci. 32 (2005) 252-260.
  23. K. Komai, K. Minoshima, K. Tanaka and K. Nakaike: 12th Int. Conf. on Composite Materials, (1999), pp. 1-10.
  24. M. Aktaş, R. Karakuzu and Y. Arman: Compos. Struct. 89 (2009) 77-82.
  25. H. M. Wen, T. Y. Reddy, S. R. Reid and P. D. Shoden: Key Eng. Mater. 141-143 (1998) 501-552.
  26. S.-L. Gao and J.-K. Kim: Compos. Part A Appl. Sci. Manuf. 32 (2001) 775-785.
  27. V. Kostopoulos, A. Baltopoulos, P. Karapappas, A. Vavouliotis and A. Paipetis: Compos. Sci. Tech. 70 (2010) 553-563.
  28. J. D. Splett, H. K. Iyer, C.-M. Wang and C. N. McCowan: National Institute of Standards and Technology (NIST) Recommended Practice Guide, Computing Uncertainty for Charpy Impact Test, Machine Test Results; Special Publication 960-18, US Department of Commerce: Boulder, Colorado (2008) pp. 27-29.
  29. T. Nishida and E. Yasuda: Evaluation of dynamic properties of ceramics (in Japanese), (Nikkan Kogyou Shimbun Sha, Tokyo, 1986) pp. 50-51.
  30. W. Weibull: Ingeniörs vetenskaps akademien, nr. 151 (Generalstabens litografiska anstalts förlag, Stockholm, 1939) pp. 12-14.


© 2013 The Japan Institute of Metals
Comments to us :