Materials Transactions Online

Materials Transactions, Vol.54 No.03 (2013) pp.367-370
© 2013 The Japan Institute of Metals

Wetting Behavior for Ni on (Ti0.95Mo0.05)(C0.5N0.5), (Ti0.9Nb0.1)(C0.5N0.5) and (Ti0.85Nb0.1Mo0.05)(C0.5N0.5) Substrates

Hiroyuki Hosokawa1, Koji Shimojima1, Akihiro Matsumoto1, Kiyotaka Kato1, Tetsushi Matsuda2 and Hideaki Matsubara2

1Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology, Nagoya 463-8560, Japan
2Materials Research and Development Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan

Wetting tests for Ni on (Ti0.95Mo0.05)(C0.5N0.5), (Ti0.9Nb0.1)(C0.5N0.5) and (Ti0.85Nb0.1Mo0.05)(C0.5N0.5) ceramics were carried out at 1823 K and compared with those for the previous data. The larger the Mo content was, the smaller the contact angles were. The contact angle for (Ti0.85Nb0.1Mo0.05)(C0.5N0.5) was smaller than for (Ti0.95Mo0.05)(C0.5N0.5). No new phase was observed on cross sections of the wet tested samples and microstructures could be divided into three regions: a Ni-rich region, reactive region, and substrate region. The depth of reactive region/height of Ni-rich region ratios for titanium carbonitrides containing Nb were larger than those for them containing Mo, and (Ti0.85Nb0.1Mo0.05)(C0.5N0.5) had the largest ratio in all the samples.

(Received 2012/10/22; Accepted 2012/12/17; Published 2013/02/25)

Keywords: (TixMe1−x)(CuNv), nickel, wettability, high temperature

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. M. Humenik Jr. and N. M. Parikh: J. Am. Ceram. Soc. 39 (1956) 60-63.
  2. N. M. Parikh and M. Humenik Jr.: J. Am. Ceram. Soc. 40 (1957) 315-320.
  3. N. M. Parikh: J. Am. Ceram. Soc. 40 (1957) 335-339.
  4. D. Mari, S. Bolognini, G. Feusier, T. Cutard, C. Verdon, T. Viatte and W. Benoit: Int. J. Refract. Met. Hard Mater. 21 (2003) 37-46.
  5. D. Mari, S. Bolognini, G. Feusier, T. Cutard, T. Viatte and W. Benoit: Int. J. Refract. Met. Hard Mater. 21 (2003) 47-53.
  6. N. Liu, Y. Xu, Z. Li, M. Chen, G.i Li and L. Zhang: Ceram. Int. 29 (2003) 919-925.
  7. P. Feng, W. Xiong, L. Yu, Y. Zheng and Y. Xia: Int. J. Refract. Met. Hard Mater. 22 (2004) 133-138.
  8. J. C. LaSalvia, D. K. Kim and M. A. Meyers: Mater. Sci. Eng. A 206 (1996) 71-80.
  9. S. Park and S. Kang: Scr. Mater. 52 (2005) 129-133.
  10. Y. K. Kim, J.-H. Shim, Y. W. Cho, H.-S. Yang and J.-K. Park: Int. J. Refract. Met. Hard Mater. 22 (2004) 193-196.
  11. H. Hosokawa, K. Kato, K. Shimojima and A. Matsumoto: Mater. Trans. 50 (2009) 117-122.
  12. H. Hosokawa, K. Kato, K. Shimojima and A. Matsumoto: Mater. Trans. 51 (2010) 1428-1432.
  13. K. Chen and M. Bielawski: J. Mater. Sci. 42 (2007) 9713-9716.
  14. S. Binder, W. Lengauer and P. Ettmayer: J. Alloy. Compd. 177 (1991) 119-127.
  15. W. Lengauer: J. Alloy. Compd. 229 (1995) 80-92.
  16. P. Wally, S. Binder, P. Ettmayer and W. Lengauer: J. Alloy. Compd. 230 (1995) 53-57.
  17. L. Chen, P. Ettmayer and W. Lengauer: Z. Metallk. 89 (1998) 77-82.
  18. H. Hosokawa, K. Kato, K. Shimojima, A. Matsumoto and H. Matsubara: Int. J. Refract. Met. Hard Mater. 33 (2012) 1-5.


[JIM HOME] [JOURNAL ARCHIVES]

© 2013 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp