Materials Transactions Online

Materials Transactions, Vol.54 No.03 (2013) pp.363-366
© 2013 The Japan Institute of Metals

Hydrogenation Induced Change in Structures, Magnetic Properties and Specific Heats of Magnetic Regenerative Material ErNi and ErNi2

Tao Jin1, Conghang Li1, Jiale Huang1, Ke Tang1 and Lixin Chen2

1Department of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
2Department of Material Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China

High specific heats of the magnetic regenerative material, at the temperatures lower than 20 K, is crucial for a regenerative cryocooler to reach a liquid-helium temperature. The hydrogenation of the magnetic regenerative materials ErNi and ErNi2 may change their structures, magnetic properties and specific heats, which will be investigated in this paper. XRD patterns show that crystalline and amorphous phases can both be formed in the hydrogenation at 293 K. The insertion of hydrogen atoms can lead to a larger specific heat, measured by a physical property measurement system (PPMS), in some higher temperature ranges. But the peak values of specific heat of the hydrides are lower than those of their parent compounds below 15 K, which indicates that the idea of regenerative material hydrogenation should be left out in the efforts of regenerator performance enhancement.

(Received 2012/08/16; Accepted 2012/12/10; Published 2013/02/25)

Keywords: hydrogenation, crystal structure, magnetic properties, specific heat

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. R. Li, M. Ogawa and T. Hashimoto: Cryogenics 30 (1990) 521-526.
  2. Y. Matsubara and J. L. Gao: Cryogenics 34 (1994) 259-262.
  3. C. Wang, G. Thummes and C. Heiden: Cryogenics 37 (1997) 159-164.
  4. T. Numazawa, O. Arai, A. Sato, S. Fujimoto, T. Oodo, Y. M. Kang and T. Yanagitani: Cryocoolers 11, (Kluwer Academic/Plenum Publishers, USA, 2001) pp. 465-473.
  5. R. Radebaugh: Cryogenics and Refrigeration Proceedings of ICCR’2008, (Science Press, Beijing, 2008) pp. 11-22.
  6. M. Dilixiati, K. Kanda, K. Ishikawa and K. Aoki: J. Alloy. Compd. 337 (2002) 128-135.
  7. H. Senoh, N. Takeichi, H. T. Takeshita, H. Tanaka, T. Kiyobayashi and N. Kuriyama: Mater. Trans. 44 (2003) 1663-1666.
  8. W. E. Wallace, S. K. Malik, T. Takeshita, S. G. Sankar and D. M. Gualtieri: J. Appl. Phys. 49 (1978) 1486-1491.
  9. H. Senoh, T. Kiyobayashi, N. Takeichi, H. Tanaka, Q. Xu, H. T. Takeshita, M. Toyouchi, T. Oishi and N. Kuriyama: Mater. Trans. 45 (2004) 292-295.
  10. K. Asano, Y. Yamazaki and Y. Iijima: Mater. Trans. 43 (2002) 1095-1099.
  11. Z. Tarnawski, L. Kolwicz-Chodak, H. Figiel, N. T. H. Kim-Ngan, L. Havela, K. Miliyanchuk, V. Sechovsky, E. Santava and J. Sebek: J. Alloy. Compd. 442 (2007) 372-374.
  12. Y. Nishi, H. H. Uchida and K. Numazaki: Mater. Trans. 48 (2007) 2964-2968.
  13. T. Jin, C. H. Li, K. Tang, L. X. Chen, B. Xu and G. B. Chen: Cryogenics 51 (2011) 214-217.
  14. D. Wang, Y. L. Li, Y. Long, R. C. Ye, Y. Q. Chang and F. R. Wan: J. Magn. Magn. Mater. 311 (2007) 697-701.
  15. G. B. Chen, K. Tang, Y. H. Huang, Z. H. Gan and R. Bao: Cryogenics 44 (2004) 833-837.
  16. B. Xu, T. Jin, C. H. Li, K. Tang, L. X. Chen and G. B. Chen: Rare Metal Mater. Eng. 40 (2011) 14-17.
  17. P. Termsuksawad, S. Niyomsoan, R. B. Goldfarb, V. I. Kaydanov, D. L. Olson, B. Mishra and Z. Gavrac: J. Alloy. Compd. 373 (2004) 86-95.
  18. S. A. Nikitin, V. N. Verbetsky, E. A. Ovchenkov and A. A. Salamova: Int. J. Hydrogen Energy 22 (1997) 255-257.


© 2013 The Japan Institute of Metals
Comments to us :