Materials Transactions Online

Materials Transactions, Vol.54 No.03 (2013) pp.350-356
© 2013 The Japan Institute of Metals

Solving the Transient Cost-Related Optimization Problem for Copper Flash Smelting Process with Legendre Pseudospectral Method

Jian-Hua Liu, Wei-Hua Gui, Yong-Fang Xie and Zhao-Hui Jiang

School of Information Science & Engineering, Central South University, Changsha, 410083, P. R. China

In the present contribution, a scheme to solve transient cost-related optimization problem of dynamic transient procedure for copper flash smelting process is investigated. Taking the actual copper flash smelting process at a Smelter in China as the research object, the transient cost-related optimization problem is presented by integrating transient time, transient resources consumption and the state fluctuation constraint. Then, it was considered as the operational parameters trajectories optimization problem that generates minimum-time and minimum-resources consumption during dynamic transient procedure. The dynamic relationship and the working state fluctuation are constructed in the form of constraints in the resulting optimization problem formulation. The Legendre Pseudospectral method is used to solve the constrained, nonlinear optimization problem. The results of numerical experiments of dynamic transient procedure for copper flash smelting process are given to illustrate the proposed scheme.

(Received 2012/10/15; Accepted 2012/12/18; Published 2013/02/25)

Keywords: transient cost-related optimization, dynamic transient procedure, Legendre pseudospectral method, copper flash smelting process

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. D. R. Higgins, N. B. Gray and M. R. Davidson: Miner. Eng. 22 (2009) 1251-1265.
  2. A. H. Alyaser and J. K. Brimacombe: Metall. Mater. Trans. B 26 (1995) 25-40.
  3. X. F. Li, S. H. Peng, X. L. Han, C. Mei and T. Y. Xiao: J. Univ. Sci. Technol. B 11 (2004) 115-119.
  4. B. S. Kim, H. I. Lee, J. T. Park, J. S. Sohn and J. C. Lee: Mater. Trans. 49 (2008) 1889-1892.
  5. B. S. Kim, E. Y. Kim, C. K. Kim, H. I. Lee and J. S. Sohn: Mater. Trans. 49 (2008) 1192-1198.
  6. I. Harjunkoski, H. W. Borchers and M. Fahl: Comput-Aided Chem. Eng. 21 (2006) 1197-1202.
  7. M. Karrari, W. Rosehart and O. P. Malik: Asian J. Control. 7 (2005) 286-295.
  8. T. Norgate and S. Jahanshahi: Miner. Eng. 23 (2010) 65-73.
  9. F. Bakhtiari, H. Atashi, M. Zivdar, S. Seyedbagheri and M. H. Fazaelipoor: J. Ind. Eng. Chem. 17 (2011) 29-35.
  10. I. Jovanović, P. Stanimirović and Ž. Živković: Environ. Model. Assess. 18 (2013) 73-83.
  11. X. B. Peng, W. H. Gui, Y. G. Li, Z. K. Hu and L. Y. Wang: Proc. 2007 IEEE Conf. Cont. Autom., (ICCA, Guang-zhou, China, May 2007) 2328-2333.
  12. L. Pradenas, J. Zúñiga and V. Parada: Interfaces 36 (2006) 296-301.
  13. M. Schaaf, Z. Gómez and A. Ciprianom: J. Process Contr. 20 (2010) 3-17.
  14. W. H. Gui, L. Y. Wang, C. H. Yang, Y. F. Xie and X. B. Peng: T. Nonferr. Metal. Soc. China 17 (2007) 1075-1081.
  15. X. F. Li, C. Mei, P. Zhou, X. L. Han and T. Y. Xiao: T. Nonferr. Metal. Soc. China 13 (2003) 203-207.
  16. H. R. Chen, C. Mei, K. Xie, X. F. Li, J. Zhou, X. H. Wang and Z. L. Ge: T. Nonferr. Metal. Soc. China 14 (2004) 631-636.
  17. S. L. Jämsä-Jounela, M. Vermasvuori, P. Endén and S. Haavisto: Control Eng. Pract. 11 (2003) 83-92.
  18. R. Parada, R. Parra and I. Wilkomirsky: Can. Metall. Quart. 43 (2004) 561-570.
  19. Z. Z. Zhu and J. Q. He: The Modern Metallurgy, (Science Press, Beijing, 2003) (in Chinese).
  20. M. Shamsi: Optim. Contr. Appl. Met. 32 (2011) 668-680.
  21. H. P. Ma, T. H. Qin and W. Zhang: IEEE T. Automat. Contr. 56 (2011) 675-680.
  22. G. Qi, K. Wei and I. M. Ross: IEEE T. Automat. Contr. 51 (2006) 1115-1129.
  23. G. Elnagar, M. A. Kazemi and M. Razzaghi: IEEE T. Automat. Contr. 40 (1995) 1793-1796.
  24. R. J. Vanderbei: Optim. Eng. 2 (2001) 215-243.
  25. D. Garg, W. W. Hager and A. V. Rao: Automatica 47 (2011) 829-837.
  26. J. Nocedal and S. t. Wright: Numerical Optimization, 2nd ed., (Springer Series in Operations Research, Springer, New York, 1999).
  27. M. Wächter and G. Sachs: Asian J. Control. 8 (2006) 307-313.
  28. J. W. Matousek: JOM-J. Min. Met. Mat. S. 61 (2009) 61-63.
  29. R. Sridhar, J. M. Toguri and S. Simeonov: JOM-J. Min. Met. Mat. S. 49 (1997) 48-52.
  30. P. Ronan, M. Pritzker and H. M. Budman: Ind. Eng. Chem. Res. 36 (1997) 112-121.
  31. W. Davenport and E. Partelpoeg: Flash Smelting, Analysis, Control and Optimization, (Pergamon Press, Oxford, 1987).
  32. S. L. Cain, H. M. Budman and M. Pritzker: Can. J. Chem. Eng. 74 (1996) 993-1003.
  33. W. G. Davenport, M. King, M. Schlesinger and A. K. Biswas: Extractive Metallurgy of Copper, 4th ed., (Pergamon Press, New York, 2002).
  34. P. Shimpo, S. Goto, O. Ogawa and I. Asakura: Can. Metall. Quart. 25 (1986) 113-121.
  35. Ž. Živković, N. B. Mitevska, I. Mihajlović and Đ. Nikolić: Miner. Metall. Proc. 27 (2010) 141-147.
  36. Ž. Živković, N. B. Mitevska, I. Mihajlović and Đ. Nikolić: J. Min. Metall. B 45 (2009) 23-34.
  37. M. Nagamori: Metall. Trans. 5 (1974) 531-538.
  38. I. M. Ross: A beginner’s guider to DIDO: A Matlab application package for solving optimal control problem. Elissar Technical Report TR-711, http://www.elissar.ziz, 2007.
  39. P. E. Gill, W. Murray and M. A. Saunders: User’s guide for SNOPT Version 7: Software for large-scale nonlinear programming. Technical Report, Stanford Business Software, Jun, 2008.


© 2013 The Japan Institute of Metals
Comments to us :