Materials Transactions Online

Materials Transactions, Vol.54 No.03 (2013) pp.326-331
© 2013 The Japan Institute of Metals

Fatigue Crack Growth Characteristics of a Ti-15V-3Cr-3Sn-3Al Alloy with Variously Aged Conditions

Leu-Wen Tsay1, S. T. Chang1 and Chun Chen2

1Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan, R. O. China
2Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan, R. O. China

In this study, the fatigue crack growth rate (FCGR) of a Ti-15V-3Cr-3Al-3Sn (Ti-15-3) alloy, which was aged at a temperature range of 371 to 593°C, was measured in air at room temperature. The specimen aged at 371°C showed clear serrations in the crack growth curve at a stress ratio (R) of 0.1, and it also exhibited a larger Paris law gradient than the other aged specimens at R = 0.5. The peak-aged (426°C aged) specimen had the highest FCGR of the specimens, regardless of the stress ratio. A gradual decrease in the FCGRs with increasing aging temperature, from 482 to 593°C, was observed for the over-aged specimens. Cleavage-like fracture was more likely to occur in the under- and peak-aged specimens as compared to the transgranular fatigue in the over-aged specimens. It seemed that the coarse α platelets with lowered hardness in the over-aged specimens resulted in a higher resistance to fatigue crack growth in the Ti-15-3 alloy.

(Received 2012/10/18; Accepted 2012/12/10; Published 2013/02/25)

Keywords: titanium-15vanadium-3chromium-3tin-3aluminum, fatigue crack growth rate, aging treatment, stress ratio

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. R. R. Boyer and R. D. Briggs: Mater. Eng. Perf. 14 (2005) 681-685.
  2. P. J. Bania, G. A. Lenning and J. A. Hall: Beta Titanium Alloys in the 1980’s, ed. by R. R. Boyer and H. W. Rosenberg, (TMS/AIME, 1983) pp. 209-229.
  3. T. Nishikawa, M. Okada, K. Toyama and T. Maeda: The Sumitomo Search 35 (1987) 21-28.
  4. M. Okada: ISIJ 31 (1991) 834-839.
  5. Y. Kawabe and S. Muneki: ISIJ 31 (1991) 785-791.
  6. Y. Kawabe and S. Muneki: Beta titanium alloys in the 1990’s, ed. by D. Eylon, R. R. Boyer and D. A. Koss, (The Minerals Metals & Materials Society, 1993) pp. 187-197.
  7. E. Breslauer and A. Rosen: Mater. Sci. Technol. 7 (1991) 441-446.
  8. N. Niwa, A. Arai, H. Takatori and K. Ito: ISIJ 31 (1991) 856-862.
  9. R. D. Briggs, R. Taggart and D. H. Polonis: Microstructure, Fracture Toughness and Fatigue Crack Growth Rate in Titanium Alloys, ed. by A. K. Chakrabarti and J. C. Chesnutt (TMS-AIME, 1987) pp. 65-80.
  10. S. M. Kazanjian and E. A. Starke Jr.: Int. J. Fatigue 21 (1999) 127-135.
  11. H. H. Hsu, Y. C. Wu and L. W. Tsay: Mater. Sci. Eng. A 545 (2012) 20-25.
  12. L. W. Tsay, Y. J. Wu and C. Chen: Metall. Mater. Trans. A 42 (2011) 3778-3784.
  13. W. Sha and S. Malinov: Titanium Alloys: Modelling of Microstructure, Properties and Applications, (Woodhead Publishing, Cambridge, UK, 2009) pp. 342-343.
  14. A. Saxena and S. J. Hudak: Int. J. Fract. 14 (1978) 453-458.
  15. Z. N. Ismarrubie, A. Ali, T. Satake and M. Sugano: Mater. Des. 32 (2011) 1456-1461.
  16. S. H. Wang and C. Muller: J. Mater. Sci. 33 (1998) 4509-4516.
  17. S. V. Kamat and N. Eswaraprasad: Scr. Metall. Mater. 26 (1992) 1713-1718.


© 2013 The Japan Institute of Metals
Comments to us :