Materials Transactions Online

Materials Transactions, Vol.54 No.03 (2013) pp.297-303
© 2013 The Japan Institute of Metals

Formation Behavior of Nanoclusters in Al-Mg-Si Alloys with Different Mg and Si Concentration

SeongNyeong Kim1, JaeHwang Kim1, Hiroyasu Tezuka1, Equo Kobayashi1 and Tatsuo Sato2

1Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo 152-8552, Japan
2Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan

In this paper, nanocluster formation behavior in Al-Mg-Si alloys with different Mg and Si concentration was studied by differential scanning calorimetry (DSC), micro-Vickers hardness and electrical resistivity measurements. Two exothermic peaks were detected in the alloys with different Mg and Si concentration in the DSC results, and separated using the Gaussian function method in order to analyze the Cluster (1) and Cluster (2). It is found that both of Cluster (1) and Cluster (2) formation are enhanced with the higher Mg + Si and the Mg/Si ratio close to 1.0. Especially, it is suggested that the formation sequence of Cluster (1) during natural aging is classified into three regions from the results of hardness and electrical resistivity measurement. These results mean that the composition of Cluster (1) is initially Si-rich then gradually becomes enriched in Mg by the incorporation of Mg. The growth rate of Cluster (1) is not high, whereas of Cluster (2) is higher and the composition becomes Mg/Si 1.0.

(Received 2012/10/16; Accepted 2012/11/14; Published 2013/02/25)

Keywords: aluminum-magnesium-silicon alloy, age hardening, nanoclusters, formation behavior, magnesium/silicon ratio

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. G. A. Edwards, K. Stiller, G. L. Dunlop and M. J. Couper: Acta Mater. 46 (1998) 3893-3904.
  2. D. W. Pashley, J. W. Rhodes and A. Sendorek: J. Inst. Metals 94 (1966) 41.
  3. C. S. T. Chang, I. Wieler, N. Wanderka and J. Banhart: Ultramicroscopy 109 (2009) 585.
  4. T. Sato: J. JILM 56 (2006) 592-601.
  5. A. Serizawa, S. Hirosawa and T. Sato: Mater. Sci. Forum 519-521 (2006) 245-250.
  6. A. Serizawa, S. Hirosawa and T. Sato: Metall. Mater. Trans. A 39 (2008) 243-251.
  7. K. Yamada, T. Sato and A. Kamio: J. JILM 51 (2001) 215.
  8. J. H. Kim and T. Sato: J. Nanosci. Nanotechnol. 11 (2011) 1319-1322.
  9. J. Kim, E. Kobayashi and T. Sato: Mater. Trans. 52 (2011) 906-913.
  10. Y. Otsuka, A. Serizawa and T. Sato: Proc. 115th Conf. Japan Inst. Light Metals, (2008) p. 325.
  11. W. F. Miao and D. E. Laughlin: Metall. Mater. Trans. A 31 (2000) 361.
  12. A. Gaber, M. A. Gaffar, M. S. Mostafa and E. F. Abo Zeid: J. Alloy. Compd. 429 (2007) 167-175.
  13. J. Banhart, C. S. T. Chang, Z. Liang and N. Wanderka: Adv. Eng. Mater. 12 (2010) 559-571.
  14. A. Serizawa, T. Sato and W. J. Poole: Phil. Mag. Lett. 90 (2010) 279.
  15. K. Osamura, Y. Hiraoka and Y. Murakami: Philos. Mag. 28 (1973) 809.
  16. A. K. Gupta and D. J. Lloyd: Metall. Mater. Trans. A 30 (1999) 879.


© 2013 The Japan Institute of Metals
Comments to us :