Materials Transactions Online

Materials Transactions, Vol.54 No.03 (2013) pp.286-290
© 2013 The Japan Institute of Metals

Microstructure and Mechanical Properties of Cu-Zr-Al Bulk Metallic Glass with Addition of Co

Wei Zhou, Yiming Tao, Li Liu, Lingti Kong, Jinfu Li and Yaohe Zhou

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

(Cu46Zr46Al8)100−xCox (x = 0, 1, 2, 3 and 4) bulk metallic glasses (BMGs) were synthesized by copper mold casting, and the effect of Co addition on the microstructure and mechanical properties of Cu46Zr46Al8 BMG was investigated. The existence of immiscibility gap between Co and the main component Cu is responsible for liquid separation to form droplet-type structure during solidification. The size scale for the droplet-type structure trends to increase with the Co concentration. Depending on the glass-forming ability of the separated liquid phase, amorphous/amorphous or amorphous/crystalline composite structure can be obtained. The results of compression test reveal that the plasticity and the fracture strength can be simultaneously enhanced with an appropriate amount of Co addition owing to nanoscale phase separation with the formation of Cu-rich and Co-rich glassy phases.

(Received 2012/11/12; Accepted 2012/12/17; Published 2013/02/25)

Keywords: bulk metallic glass, cobalt addition, phase separation, mechanical properties

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou and W. L. Johnson: Nature 451 (2008) 1085-1089.
  2. H. Bei, S. Xie and E. P. George: Phys. Rev. Lett. 96 (2006) 105503.
  3. J. M. Liu, X. G. Yuan, H. F. Zhang, H. M. Fu and Z. Q. Hu: Mater. Trans. 51 (2010) 1033-1037.
  4. F. X. Qin, X. M. Wang and A. Inoue: Mater. Trans. 48 (2007) 2390-2394.
  5. H. Choi-Yim, R. D. Conner, F. Szuecs and W. L. Johnson: Acta Mater. 50 (2002) 2737-2745.
  6. L. Liu, C. L. Qiu, H. Zou and K. C. Chan: J. Alloy. Compd. 399 (2005) 144-148.
  7. Y. H. Liu, G. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan and W. H. Wang: Science 315 (2007) 1385-1388.
  8. L. Y. Chen, Z. D. Fu, G. Q. Zhang, X. P. Hao, Q. K. Jiang, X. D. Wang, Q. P. Cao, H. Franz, Y. G. Liu, H. S. Xie, S. L. Zhang, B. Y. Wang, Y. W. Zeng and J. Z. Jiang: Phys. Rev. Lett. 100 (2008) 075501.
  9. J. C. Oh, T. Ohkubo, Y. C. Kim, E. Fleury and K. Hono: Scr. Mater. 53 (2005) 165-169.
  10. X. H. Du, J. C. Huang, K. C. Hsieh, Y. H. Lai, H. M. Chen, J. S. C. Jang and P. K. Liaw: Appl. Phys. Lett. 91 (2007) 131901.
  11. D. H. Pi, J. K. Lee, M. H. Lee, S. Yi, J. Eckert and K. B. Kim: J. Alloy. Compd. 486 (2009) 233-236.
  12. E. S. Park and D. H. Kim: Acta Mater. 54 (2006) 2597-2604.
  13. Q. S. Zhang, W. Zhang, G. Q. Xie and A. Inoue: Mater. Sci. Eng. B 148 (2008) 97-100.
  14. K. B. Kim, J. Das, F. Baier, M. B. Tang, W. H. Wang and J. Eckert: Appl. Phys. Lett. 88 (2006) 051911.
  15. W. Zhou, L. T. Kong, J. F. Li and Y. H. Zhou: J. Mater. Sci. 47 (2012) 4996-5001.
  16. A. Takeuchi and A. Inoue: Mater. Trans. 46 (2005) 2817-2829.
  17. J. M. Park, J. H. Han, N. Mattern, D. H. Kim and J. Eckert: Metall. Mater. Trans. A 43 (2012) 2598-2603.
  18. Z. F. Zhang, J. Eckert and L. Schultz: Acta Mater. 51 (2003) 1167-1179.
  19. J. Eckert, J. Das, S. Pauly and C. Duhamel: J. Mater. Res. 22 (2007) 285-301.
  20. E. S. Park, H. J. Chang, J. S. Kyeong and D. H. Kim: J. Mater. Res. 23 (2008) 1995-2002.
  21. K. Mondal, T. Ohkubo, T. Toyama, Y. Nagai, M. Hasegawa and K. Hono: Acta Mater. 56 (2008) 5329-5339.
  22. L. Q. Xing, C. Bertrand, P. P. Dallas and M. Cornet: Mater. Sci. Eng. A 241 (1998) 216-225.


© 2013 The Japan Institute of Metals
Comments to us :