Materials Transactions Online

Materials Transactions, Vol.53 No.04 (2012) pp.766-769
© 2012 The Japan Institute of Metals

Microstructure Characterization and Thermal Stability of Nanocrystalline Cu Powders Processed via Cryomilling

Jingchun Liu1, Hua Cui2, Xianglin Zhou1 and Jishan Zhang1

1State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, P. R. China
2School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China

Nanocrystalline Cu powders with a grain size of about 32 nm have been successfully synthesized using cryomilling technique. The effect of cryomilling time on the particle size, grain size, and structure of cryomilled Cu powders were investigated. The thermal stability of cryomilled Cu powders was studied and the study described the enthalpy change due to grain growth and stress relaxation of cryomilled Cu particles by annealing. The stress relaxation process associated with reordering of the grain boundaries was found to occur at 280°C. The grain growth process was found at 330°C and the thermal release of the grain growth was detected by differential scanning calorimetry analysis.

(Received 2011/12/06; Accepted 2012/01/10; Published 2012/03/25)

Keywords: copper, nanostructures, transmission electron microscopy, differential scanning calorimetry

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. H. Gleiter: Prog. Mater. Sci. 33 (1989) 223-315.
  2. M. A. Meyers, A. Mishra and D. J. Benson: Prog. Mater. Sci. 51 (2006) 427-556.
  3. E. J. Lavernia, B. Q. Han and J. M. Schoenung: Mater. Sci. Eng. A 493 (2008) 207-214.
  4. D. B. Witkin and E. J. Lavernia: Prog. Mater. Sci. 51 (2006) 1-60.
  5. B. Yang, J. Z. Fan, B. Hao, X. F. Tian, J. S. Cheng and J. S. Zhang: Rare Met. 26 (2007) 147-151.
  6. G. Lucadamo, N. Y. C. Yang, S. C. Marchi and E. J. Lavernia: Mater. Sci. Eng. A 30 (2006) 230-241.
  7. B. Ahn, R. Mitra, E. J. Lavernia and S. R. Nutt: J. Mater. Sci. 45 (2010) 4790-4795.
  8. J. Milligan, R. Vintila and M. Brochu: Mater. Sci. Eng. A 508 (2009) 43-49.
  9. B. Q. Han, J. Ye, F. Tang, J. Schoenung and E. J. Lavernia: J. Mater. Sci. 42 (2007) 1660-1672.
  10. F. Zhou, J. Lee and E. J. Lavernia: Scr. Mater. 44 (2001) 2013-2017.
  11. J. Lee, F. Zhou, K. H. Chung, N. J. Kim and E. J. Lavernia: Metall. Mater. Trans. A 32 (2001) 3109-3115.
  12. M. Kambara, K. Uenishi and K. F. Kobayashi: J. Mater. Sci. 35 (2000) 2897-2905.
  13. B. K. VanLeeuwen, K. A. Darling, C. C. Koch, R. O. Scattergood and B. G. Butler: Acta Mater. 58 (2010) 4292-4297.
  14. L. Lu, N. R. Tao, L. B. Wang, B. Z. Ding and K. Lu: J. Appl. Phys. 89 (2001) 6408-6414.
  15. L. Lu, M. L. Sui and K. Lu: Acta Mater. 49 (2001) 4127-4134.
  16. K. Tao, X. L. Zhou, H. Cui, H. B. Chen, Y. B. Li and J. S. Zhang: Int. J. Min. Met. Mater. 16 (2009) 77-83.
  17. J. H. He and J. M. Schoenung: Mater. Sci. Eng. A 336 (2002) 274-319.
  18. Z. Zhang, F. Zhou and E. J. Lavernia: Metall. Mater. Trans. A 34 (2003) 1349-1355.
  19. C. Goujon, P. Goeuriot, P. Delcroix and G. Le Caër: J. Alloy. Compd. 315 (2001) 276-283.
  20. V. L. Tellkamp, S. Dallek, D. Cheng and E. J. Lavernia: J. Mater. Res. 16 (2001) 938-944.
  21. J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R. Z. Valiev and T. G. Langdon: Acta Mater. 44 (1996) 2973-2982.
  22. K. W. Liu and F. Mücklich: Acta Mater. 49 (2001) 395-403.


© 2012 The Japan Institute of Metals
Comments to us :