Materials Transactions Online

Materials Transactions, Vol.53 No.04 (2012) pp.739-744
© 2012 The Japan Institute of Metals

The Effect of Phases in Nanoparticles Produced by Electrical Wire Explosion on Arsenic(III) Removal

Kyungsun Song1, Chang-Yul Suh1, Kyung-Seok Ko1, Jun-Hwan Bang1, Wonbaek Kim1 and In-Jin Shon2

1Korea Institute of Geoscience & Mineral Resources (KIGAM), Gwahang-no 124, Yuseong-gu, Daejeon 305-350, Korea
2Division of Advanced Materials Engineering, Chonbuk National University, Chonbuk 561-756, Korea

Nano-sized iron oxide particles were prepared by electrical wire explosion (EWE) for As(III) removal. The electrical explosion of Fe wire in Ar-5%O2, Ar-10%O2, and Ar-30%O2 produced a wide spectrum of iron-oxide phases from wüstite to hematite depending on the oxygen partial pressure in the chamber. An increase in oxygen partial pressure tended to shift the iron oxides towards higher oxidation states. The major phase of the explosion product was verified as the magnetite (Fe3O4)-maghemite (γ-Fe2O3) mixture through the step scan of (511) and (440) peaks. The As(III) removal capacity and saturation magnetization were found to be proportional to the amount of zero-valent iron (ZVI) in the particles. The As(III) adsorption capacity (qmax, mg/g) calculated from the Langmuir isotherm was 19.7, 9.46, and 3.55 mg/g for particles synthesized in Ar-5%O2, Ar-10%O2, and Ar-30%O2, respectively. The EWE process could be utilized to produce nano-sized adsorbent particles with a wide range of As(III) removal capability simply by varying the gas mixture. The eco-friendly nature of EWE process combined with the magnetic separation option would add to the list of the successful As(III) removal adsorbents.

(Received 2011/12/12; Accepted 2012/01/10; Published 2012/03/25)

Keywords: electrical wire explosion (EWE), arsenic removal, zero-valent iron, magnetite, maghemite

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. P. L. Smedley and D. G. Kinniburgh: Appl. Geochem. 17 (2002) 517-568.
  2. Y. Bhattacharjee: Science 315 (2007) 1659-1661.
  3. World Health Organization: Guidelines for drinking water quality: Recommendations, vol. 1, 2nd ed., (1993).
  4. US EPA: Arsenic treatment technology evaluation handbook for small systems, (2003).
  5. S. Dixit and J. G. Hering: Environ. Sci. Technol. 37 (2003) 4182-4189.
  6. J. T. Mayo, C. Yavuz, S. Yean, L. Cong, H. Shipley, W. Yu, J. Falkner, A. Kan, M. Tomson and V. L. Colvin: Sci. Technol. Adv. Mater. 8 (2007) 71-75.
  7. A. Uheida, G. Salazar-Alvarez, E. Björkman, Z. Yu and M. Muhammed: J. Colloid Interface Sci. 298 (2006) 501-507.
  8. K. Simeonidis, T. Gkinis, S. Tresintsi, C. Martinez-Boubeta, G. Vourlias, I. Tsiaoussis, G. Stavropoulos, M. Mitrakas and M. Angelakeris: Chem. Eng. J. 168 (2011) 1008-1015.
  9. W. Kim, J.-S. Park, C.-Y. Suh, S.-W. Cho, S. Lee and I.-J. Shon: Mater. Trans. 50 (2009) 2897-2899.
  10. K.-C. Huang and S. H. Ehrman: Langmuir 23 (2007) 1419-1426.
  11. J. Mürbe, A. Rechtenbach and J. Töpfer: Mater. Chem. Phys. 110 (2008) 426-433.
  12. D. Farrell, S. A. Majetich and J. P. Wilcoxon: J. Phys. Chem. B 107 (2003) 11022-11030.
  13. A. G. Roca, J. F. Marco, M. d. P. Morales and C. J. Serna: J. Phys. Chem. C 111 (2007) 18577-18584.
  14. O. X. Leupin and S. J. Hug: Water Res. 39 (2005) 1729-1740.
  15. M. A. V. Ramos, W. Yan, X.-q. Li, B. E. Koel and W.-x. Zhang: J. Phys. Chem. C 113 (2009) 14591-14594.
  16. C. Su and R. W. Puls: Environ. Sci. Technol. 35 (2001) 1487-1492.
  17. K. Sasaki, H. Nakano, W. Wilopo, Y. Miura and T. Hirajima: Colloids Surf. A 347 (2009) 8-17.
  18. S. R. Kanel, B. Manning, L. Charlet and H. Choi: Environ. Sci. Technol. 39 (2005) 1291-1298.
  19. V. Tanboonchuy, J.-C. Hsu, N. Grisdanurak and C.-H. Liao: Environ. Sci. Pollut. Res. 18 (2011) 857-864.


© 2012 The Japan Institute of Metals
Comments to us :