Materials Transactions Online

Materials Transactions, Vol.53 No.04 (2012) pp.733-738
© 2012 The Japan Institute of Metals

Microstructural Characteristics of InGaZnO Thin Film Using an Electrical Current Method

Yen-Ting Chen1, Fei-Yi Hung1, Shoou-Jinn Chang2, Truan-Sheng Lui1 and Li-Hui Chen1

1Department of Materials Science and Engineering, Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan, R. O. China
2Institute of Microelectronics & Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan, R. O. China

This research studied the microstructural characteristics and electronic properties of IGZO1114 films (atomic ratio In : Ga : Zn : O = 1 : 1 : 1 : 4) with different annealing conditions. The solid-state electrical current method was used in the IGZO/In films (In layer was a channel) and the interface effect on the electrical current mechanism was discussed. The experimental results show the effect of the annealing temperature was larger than that of the deposition oxygen flow rate for the film resistances. IGZO film which was annealed at 575 K was able to stabilize the composition of the matrix. The electrical current experiment at room temperature confirmed that the diffusion of the IGZO/In film occurred through an electric current induced crystallization (EIC). The In layer not only assisted the recrystallization behavior of the IGZO film, but also improved the electrical resistance.

(Received 2011/10/07; Accepted 2012/01/06; Published 2012/03/25)

Keywords: InGaZnO, crystallization, electric current induced crystallization (EIC), electrical resistance

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. Y. K. Moon, S. Lee, D. H. Kim, D. H. Lee, C. O. Jeong and J. W. Park: JPN J. Appl. Phys. 48 (2009) 031301-1.
  2. G. H. Kim, B. D. Ahn, H. S. Shin, W. H. Jeong, H. J. Kim and H. J. Kim: Appl. Phys. Lett. 94 (2009) 233501.
  3. Y. Kikuchi, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono: Thin Solid Films 518 (2010) 3017.
  4. M. Nakata, K. Takechi, T. Eguchi, E. Tokumitsu, H. Yamaguchi and S. Kaneko: JPN J. Appl. Phys. 48 (2009) 081607.
  5. D. P. Gosain and T. Tanaka: JPN J. Appl. Phys. 48 (2009) 03B018.
  6. H. Godo, D. Kawae, S. Yoshitomi, T. Sasaki, S. Ito, H. Ohara, H. Kishida, M. Takahashi, A. Miyanaga and S. Yamazaki: JPN J. Appl. Phys. 49 (2010) 03CB04.
  7. K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi and S. Kaneko: JPN J. Appl. Phys. 48 (2009) 011301.
  8. J. Lee, J. S. Park, Y. S. Pyo, D. B. Lee, E. H. Kim, D. Stryakhilev, T. W. Kim, D. U. Jin and Y. G. Mo: Appl. Phys. Lett. 95 (2009) 123502.
  9. S. Y. Lee, S. Chang and J. S. Lee: Thin Solid Films 518 (2010) 3030.
  10. A. Sato, M. Shimada, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano and H. Hosono: Thin Solid Films 518 (2009) 1309.
  11. F. Y. Hung: Mater. Trans. 52 (2011) 1138-1141.
  12. H. C. Chuang, F. Y. Hung, T. S. Lui and L. H. Chen: Mater. Trans. 52 (2011) 25-30.
  13. F. Y. Hung, Z. R. Wang, T. S. Lui and L. H. Chen: Mater. Trans. 46 (2005) 1820-1824.
  14. B. D. Ahn, H. S. Shin, G. H. Kim, J. S. Park and H. J. Kim: JPN J. Appl. Phys. 48 (2009) 03B019.
  15. I. K. Jeong, H. L. Park and S. I. Mho: Solid State Commun. 108 (1998) 823-826.
  16. Y. Sun and J. A. Rogers: Adv. Mater. 19 (2007) 1897-1916.
  17. K. Inoue, K. Tominaga, T. Tsuduki, M. Mikawa and T. Moriga: Vacuum 83 (2009) 552-556.
  18. J. A. Jeong and H. K. Kim: Thin Solid Films 519 (2011) 3276-3282.
  19. J. H. Zheng, Q. Jiang and J. S. Lian: Appl. Surf. Sci. 257 (2011) 5083-5087.
  20. N. Tripathi, K. Vijayarangamuthu and S. Rath: Mater. Chem. Phys. 126 (2011) 568-572.
  21. K. J. Chen, F. Y. Hung, T. S. Lui, S. J. Chang and Z. S. Hu: Mater. Trans. 52 (2011) 1560-1564.
  22. S. Hwang, J. H. Lee, C. H. Woo, J. Y. Lee and H. K. Cho: Thin Solid Films 519 (2011) 5146-5149.


[JIM HOME] [JOURNAL ARCHIVES]

© 2012 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp