Materials Transactions Online

Materials Transactions, Vol.53 No.04 (2012) pp.724-732
© 2012 The Japan Institute of Metals

Cell Proliferation, Corrosion Resistance and Mechanical Properties of Novel Titanium Foam with Sheet Shape

Komei Kato1, Akiko Yamamoto2, 3, Shojiro Ochiai4, Yuzo Daigo5, Takeshi Isobe5, Suguru Matano4 and Kenichi Omori2

1Mitsubishi Materials Corporation, Saitama 330-8508, Japan
2Biomaterials Center, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
3International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
4Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
5High Performance Alloy Products Division, Advanced & Tools Company, Mitsubishi Materials Corporation, Kitamoto 364-0023, Japan

We had developed novel titanium (Ti) foam sheet with original slurry foaming method. The products had an average pore size under 500 µm in diameter, volumetric porosities over 80%, and chemical composition corresponding to grade 4 in ISO 5832-2; Implants for surgery — Metallic materials. The Ti foam had the tensile strength of 9 to 20 MPa similar to cancellous bone strength and anisotropic characteristics. Considering the application of our Ti foam for surface modification of hip or knee prostheses, we prepared Ti foam sheet joined with CP Ti, Ti-6Al-4V, or Zr-2.5Nb plate to evaluate the effect of joined solid metals on cell proliferation and corrosion resistance. Plate materials did not show any significant difference on cell proliferation test but affected the anode corrosion rates. Our novel Ti foam exhibited high applicability to the surface modification not only of Ti but also of Ti-6Al-4V and Zr-2.5Nb orthopedic implants.

(Received 2011/10/25; Accepted 2011/12/28; Published 2012/03/25)

Keywords: titanium foam, cell proliferation, anode corrosion, cancellous bone

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. T. Narushima and T. Hanawa, et al.: Materials for Medicine, (The Japan Inst. Metals, 2010) pp. 164-166.
  2. H. Hahn and W. Palich: J. Biomed. Mater. Res. 4 (1970) 571-577.
  3. K. Ishimizu: Materia Japan 49 (2010) 148-152.
  4. B. Levine: Adv. Eng. Mater. 10 (2008) 788-792.
  5. L. D. Zardiackas, D. E. Parsell, L. D. Dillon, D. W. Mitchell, L. A. Nunnery and R. Poggie: J. Biomed. Mater. Res. (Appl. Biomater.) 58 (2001) 180-187.
  6. D. A. Shimko, V. F. Shimko, E. D. Sander, K. F. Dickson and E. A. Nauman: J. Biomed. Mater. Res. 73 (2005) 315-324.
  7. J. D. Bobyn, R. M. Pilliar, H. U. Cameron and G. C. Weatherly: Clin. Orthop. Relat. Res. 150 (1980) 263-270.
  8. K. Alvarez and H. Nakajima: Materials 2 (2009) 790-832.
  9. M. Mour, D. Das, T. Winkler, E. Hoeing, G. Mielke, M. M. Morlock and A. F. Schilling: Materials 3 (2010) 2947-2974.
  10. X. Miao and D. Sun: Materials 3 (2010) 26-47.
  11. R. Singh, P. D. Lee, R. J. Dashwood and T. C. Lindley: Mater. Technol. 25 (2010) 127-136.
  12. B. V. Krishna, S. Bose and A. Bandyopadhyay: Acta Biomater. 3 (2007) 997-1006.
  13. G. E. Ryan, A. S. Pandit and D. S. Apatsidis: Biomaterials 29 (2008) 3625-3635.
  14. L. Mullen, R. C. Stamp, W. K. Brooks, E. Jones and C. J. Sutcliffe: J. Biomed. Mater. Res. Part B: Appl. Biomater. 89B (2009) 325-334.
  15. C. E. Wen, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina and M. Mabuchi: J. Mater. Sci. Mater. Med. 13 (2002) 397-401.
  16. T. Imwinkelried: J. Biomed. Mater. Res. 81A (2007) 964-970.
  17. T. F. Hong, Z. X. Guo and R. Yang: J. Mater. Sci.: Mater. Med. 19 (2008) 3489-3495.
  18. N. Tuncer and G. Arslan: J. Mater. Sci. 44 (2009) 1477-1484.
  19. J. P. Li, S. H. Li, C. A. Van Blitterswijk and K. de Groot: J. Biomed. Mater. Res. 73A (2005) 223-233.
  20. Mitsubishi Materials Corp., High Performance Alloy, Home Page. Site: http://www.mmc.co.jp/nfac/hpm/okegawa/OHP/index.html
  21. M. Wada: Chem. Chem. Industry 54 (2001) 811-813.
  22. S. Ochiai, S. Nakano, Y. Fukazawa, M. S. Aly, H. Okuda, K. Kato, T. Isobe, K. Kita and K. Honma: Mater. Trans. 51 (2010) 925-932.
  23. S. Ochiai, S. Nakano, Y. Fukazawa, M. S. Aly, H. Okuda, K. Kato, T. Isobe, K. Kita and K. Honma: Mater. Trans. 51 (2010) 699-706.
  24. M. S. Aly, H. Okuda, S. Ochiai, Y. Fukazawa, K. Morishita, K. Kato, K. Kita and K. Honma: MetFoam 2007: Proc. 5th Int. Conf. on Porous Metals and Metallic Foams, Canada, (DEStech Publications, Inc. Pennsylvania, 2008) pp. 157-160.
  25. J. Chen, E. Paetzell, J. Zhou, L. Lyons and W. Soboyejo: Mater. Sci. Eng. C 30 (2010) 647-656.
  26. V. K. Balla, S. Bodhak, S. Bose and A. Bandyopadhyay: Acta Biomater. 6 (2010) 3349-3359.
  27. W. Xue, B. V. Krishna, A. Bandyhopadhyay and S. Bose: Acta Biomater. 3 (2007) 1007-1018.
  28. V. Karageorgiou and D. Kaplan: Biomaterials 26 (2005) 5474-5491.
  29. A. Obata, H. Koori, T. Yagasaki and Y. Kimura: SCE 2nd Three-Branch Joint Meeting, Kitakyushu, (2009) E205.
  30. D. R. Carter, G. H. Schwab and M. Spengler: Acta Orthop. Scand. 51 (1980) 733-741.
  31. M. Kobayashi: J. JILM 55 (2005) 327-332.


[JIM HOME] [JOURNAL ARCHIVES]

© 2012 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp