Materials Transactions Online

Materials Transactions, Vol.53 No.04 (2012) pp.716-723
© 2012 The Japan Institute of Metals

Fine Grains Forming Process, Mechanism of Fine Grain Formation and Properties of Superalloy 718

Hwa-Teng Lee1 and Wen-Hsin Hou2

1Department of Mechanical Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan, R. O. China
2Research & Development Center, Gloria Material Technology Corp., Taiwan, R. O. China

The mechanical properties of Inconel 718 superalloy are determined primarily by its microstructure and grain size. The grain structure of Inconel 718 is traditionally refined by aging treatment, and a high volume fraction of acicular δ phase precipitates before the structure forms. During the following static or dynamic recrystallization process, the existing δ phase inhibits recrystallized grain growth and acquires a fine grain structure. In the proposed approach, the Inconel 718 specimens are re-solution heat treated at a temperature higher than the δ solvus temperature to ensure thorough dissolution of the precipitated δ phase into the austenite matrix and produce a niobium oversaturated matrix. The specimens are then cold compressed to produce a dislocation saturated matrix and are finally recrystallized at 950°C to induce the precipitation of fine δ phase. The δ phase precipitates exert a strong grain-boundary pinning effect, and thus a fine grain structure is obtained despite the high recrystallization temperature. The average grain size in the refined microstructure is found to be 2-3 µm, which is around half that of the grain size in the specimens prepared using the conventional process. Hardness testing and tensile testing at 25 and 650°C revealed its superior mechanical properties.

(Received 2011/10/31; Accepted 2011/12/26; Published 2012/03/25)

Keywords: superalloy, δ phase precipitate, recrystallization, cold forming, fine grains

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. L. A. Jackman, G. J. Smith, A. W. Dix and M. L. Lasonde: Proc. Superalloys 718, 625 and Various Derivatives, ed. by E. A. Loria, (TMS, 1991) pp. 125-132.
  2. B. P. Kashyap and M. C. Chaturvedi: Mater. Sci. Eng. A 445 (2007) 364-373.
  3. H. Lu, X. Jia, K. Zhang and C. Yao: Mater. Sci. Eng. A 326 (2002) 382-385.
  4. V. A. Valitov, Sh. Kh. Mukhtavrov and Yu. A. Raskulova: Rev. Adv. Mater. Sci. 11 (2006) 159-166.
  5. N. K. Park, I. S. Kim, Y. S. Na and J. T. Yeom: J. Mater. Process. Technol. 111 (2001) 98-102.
  6. D. E. Camus, R. A. Jaramillo, J. A. Plybum and F. S. Suarez: Proc. Superalloys 718, 625 and Various Derivatives, ed. by E. A. Loria, (TMS, 1997) pp. 291-302.
  7. G. Sjöberg, T. Antonsson, S. Azadian, R. Warren and H. Fredriksson: Proc. Superalloys 718, 625 and Various Derivatives, ed. by E. A. Loria, (TMS, 2005) pp. 351-362.
  8. H. Yuan and W. C. Liu: Mater. Sci. Eng. A 480 (2005) 281-289.
  9. M. C. Mataya and D. K. Matlock: Proc. Superalloy 718-Metallurgy and Application, ed. by E. A. Loria, (TMS, 1989) pp. 155-178.
  10. R. M. F. Jones and L. A. Jackman: JOM 51 (1999) 27-31.
  11. J. L. Russell, M. L. Lasonde and L. A. Jackman: Proc. Superalloys 718, 625 and Various Derivatives, ed. by E. A. Loria, (TMS, 2005) pp. 363-372.
  12. N. A. Wilkinson: Proc. Superalloy 718-Metallurgy and Application, ed. by Edward E. A. Loria, (TMS, 1989) pp. 119-133.
  13. C. Ruiz, A. Obabueki and K. Gillespie: Proc. Superalloys 1992, ed. by S. D. Antolovich, R. W. Stusrud, R. A. MacKay, D. L. Anton, T. Khan, R. D. Kissinger and D. L. Klarstrom, (TMS, 1992) pp. 33-42.
  14. H. Y. Zhanga, S. H. Zhanga, M. Chenga and Z. X. Li: Mater. Charact. 61 (2010) 49-53.
  15. H. J. Lu, C. G. Yao, K. F. Zhang and X. C. Jia: Mater. Mech. Eng. 27 (2003) 15-17.
  16. Y. Desvallees, M. Bouzidi, F. Bois and N. Beaude: Proc. Superalloys 718, 625 and Various Derivatives, ed. by E. A. Loria, (TMS, 1994) pp. 281-291.
  17. S. Mukhtarov, V. Valitov, M. F. X. Gigliotti, P. R. Subramamian, J. S. Mate and N. Dudova: Mater. Sci. Forum 584 (2008) 458-463.
  18. S. Chupatanakul and P. Nash: J. Mater. Sci. 41 (2006) 4965-4969.
  19. J. S. Abell, K. G. Barraclough, I. R. Harris, A. W. Vere and B. Cockayne: J. Mater. Sci. 6 (1971) 1084-1092.
  20. B. Sarkar, B. Jha, V. Kumar, S. K. Chaudhuri and S. Jha: J. Mater. Eng. Perform. 14 (2005) 219-223.
  21. O. B. Armida and J. F. Radavich: Proc. Superalloys 718, 625 and Various Derivatives, ed. by E. A. Loria, (TMS, 1991) pp. 325-335.
  22. A. Thomas, M. EI-Wahabi, J. M. Cabrera and J. M. Prado: J. Mater. Process. Technol. 177 (2006) 469-472.
  23. M. Sundararaman, P. Mukhopadhyay and S. Banerjee: Metall. Trans. A 19A (1988) 453-465.
  24. D. A. Porter and K. E. Easterling: Phase Transformation in Metals and Alloys, (CRC Press, New York, 2004) p. 116.
  25. R. Li, M. Yao, W. Liu and X. He: J. Mater. Eng. Perform. 11 (2002) 504-508.
  26. W. C. Liu, F. R. Xiao, M. Yao, Z. L. Chen, Z. Q. Jiang and S. G. Wang: Scr. Mater. 37 (1997) 53-57.
  27. I. Kirman and D. H. Warrington: Metall. Trans. A 1 (1970) 2667-2675.


© 2012 The Japan Institute of Metals
Comments to us :