Materials Transactions Online

Materials Transactions, Vol.53 No.04 (2012) pp.676-680
© 2012 The Japan Institute of Metals

Composition Dependence of Pd-Ag Alloy Proton Injection Layer on Optical Switching Properties of Electrochromic Switchable Mirror

Kazuki Tajima, Yasusei Yamada, Masahisa Okada and Kazuki Yoshimura

Material Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology, Nagoya 463-8560, Japan

We fabricated electrochromic switchable mirror glass with a Pd-Ag alloy proton injection layer to investigate the relationship between the composition of the proton injection layer and the optical switching properties, in an attempt to reduce the cost and the amount of palladium used in the fabrication of these devices. The composition of the layer was easily controlled by co-sputtering of palladium and silver metal targets with various power ratios. A device with a Pd86Ag14 layer showed the maximum transmittance in the transparent state, and similar switching speed between the reflective and transparent states to a palladium-only reference device. Changing the silver content in the layer effectively controlled the reflectance of the device. The maximum reflectance in the reflective state increased with increasing silver content, due to the high reflectance of silver. However, the maximum transmittance in the transparent state decreased, and the high silver content prevented smooth switching of the device. In this work, although Pd86Ag14 displayed the best properties as a proton injection layer, the performance was insufficient for commercial use. Therefore, more suitable fabrication conditions and proton injection materials will be the subject of future investigation.

(Received 2011/06/10; Accepted 2011/12/26; Published 2012/03/25)

Keywords: electrochromic, switchable mirror, thin film, sputtering, proton, optical properties, X-ray photoelectron spectroscopy

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. T. J. Richardson, J. L. Slack, R. D. Armitage, R. Kostecki, B. Farangis and M. D. Rubin: Appl. Phys. Lett. 78 (2001) 3047-3049.
  2. B. Farangis, P. Nachimuthu, T. J. Richardsona, J. L. Slacka, B. K. Meyer, R. C. C. Pereraa and M. D. Rubin: Solid State Ionic. 165 (2003) 309-314.
  3. J. L. M. van Mechelen, B. Noheda, W. Lohstroh, R. J. Westerwaal, J. H. Rector, B. Dam and R. Griessen: Appl. Phys. Lett. 84 (2004) 3651-3653.
  4. K. Yoshimura, Y. Yamada and M. Okada: Appl. Phys. Lett. 81 (2002) 4709-4711.
  5. Y. Yamada, K. Tajima, M. Okada, S. Bao and K. Yoshimura: Jpn. J. Appl. Phys. 46 (2007) 5168-5171.
  6. K. Tajima, Y. Yamada, S. Bao, M. Okada and K. Yoshimura: Appl. Phys. Lett. 91 (2007) 051908-1-051908-3.
  7. K. Tajima, Y. Yamada, S. Bao, M. Okada and K. Yoshimura: Appl. Phys. Lett. 92 (2008) 041912-1-041912-3.
  8. K. Tajima, Y. Yamada, M. Okada and K. Yoshimura: Thin Solid Films 519 (2010) 934-937.
  9. Y. Sakamoto, S. Hirata and H. Nishikawa: J. Less-Common Met. 88 (1982) 387-395.
  10. T. Ishikawa and R. B. McLellan: Acta Metall. 34 (1986) 1825-1831.
  11. J. Shu, A. Adnot, B. P. A. Grandjean and S. Kaliaguine: Thin Solid Films 286 (1996) 72-79.
  12. B. McCool, G. Xomeritakis and Y. S. Lin: J. Membr. Sci. 161 (1999) 67-76.
  13. S. Tosti, L. Bettinali and V. Violante: Int. J. Hydrogen Energy 25 (2000) 319-325.
  14. H. D. Tonga, A. H. J. vanden Berga, J. G. E. Gardeniersa, H. V. Jansena, F. C. Gielensb and M. C. Elwenspoek: Thin Solid Films 479 (2005) 89-94.
  15. M. L. Bosko, J. B. Miller, E. A. Lombardo, A. J. Gellman and L. M. Cornaglia: J. Membr. Sci. 369 (2011) 267-276.
  16. A. Rizzo, M. A. Tagliente, M. Alvisi and S. Scaglione: Thin Solid Films 396 (2001) 29-35.
  17. K. Tajima, Y. Yamada, M. Okada and K. Yoshimura: Sol. Energy Mater. Sol. Cell. 94 (2010) 1716-1722.


© 2012 The Japan Institute of Metals
Comments to us :