Materials Transactions Online

Materials Transactions, Vol.53 No.04 (2012) pp.652-657
© 2012 The Japan Institute of Metals

Effects of Two-Step Cold Rolling on Recrystallization Behaviors in ODS Ferritic Steel

Bin Leng1, Shigeharu Ukai1, Takeshi Narita1, Yoshito Sugino1, Qingxin Tang1, Naoko Oono1, Shigenari Hayashi1, Farong Wan2, Satoshi Ohtsuka3 and Takeji Kaito3

1Material Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8626, Japan
2School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
3Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393, Japan

The recrystallization behaviors of Fe-15Cr ODS ferritic steels underwent two different processing routes were compared; (a) 1st 70% cold rolling + intermediate annealing, (b) 1st 70% cold rolling + intermediate annealing at 1100°C to make a recrystallization structure +2nd 70% cold rolling + final annealing. Hardness and texture changes during rolling and isochronal annealing were investigated. Results show that the recrystallization temperature of 70% cold rolled specimen is 950°C and the recrystallization texture is {111} <112>. On the contrary, in the case of specimen which was cold rolled for two times, the recrystallization temperature increases to 1100°C, and the recrystallization texture changes to {111} <110> . These changes are ascribed to the different routes of crystalline rotation during 1st and 2nd cold rolling, which produce different cold rolling texture. Higher {100} <110> content induced by 2nd cold rolling after intermediate recrystallization which has low stored energy increases the recrystallization temperature. And the difference in texture intensity along γ fibre after 1st and 2nd cold rolling results in different recrystallization texture.

(Received 2011/09/29; Accepted 2012/01/23; Published 2012/03/25)

Keywords: oxide-dispersion-strengthened (ODS) ferritic steel, multiple cold rolling, intermediate annealing, crystalline rotation

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. J. J. Huet, L. Coheur, A. De Bremaecker, L. De Wilde, J. Gedopt, W. Hendrix and W. Vandermeulen: Nucl. Technol. 70 (1985) 215-219.
  2. E. A. Little: Proc. 17th Int. Symp. on Effects of Radiation on Materials, ed. by D. S. Gelles, R. K. Nanstad, A. S. Kumar and E. A. Little, (ASTM, 1996) pp. 739-752.
  3. S. Ukai, T. Nishida, T. Okuda and T. Yoshitake: J. Nucl. Mater. 258-263 (1998) 1745-1749.
  4. S. Ukai, S. Mizuta, T. Yoshitake, T. Okuda, S. Hagi, M. Fujiwara and T. Kobayashi: J. Nucl. Mater. 283-287 (2000) 702-706.
  5. T. Narita, S. Ukai, T. Kaito, S. Ohtsuka and T. Kobayashi: Nucl. Sci. Technol. 41 (2004) 1008-1012.
  6. T. S. Chou and H. K. D. H. Bhadeshia: Metall. Trans. A 24A (1993) 773-779.
  7. C. Capdevila, Y. L. Chen, N. C. K. Lassen, H. K. D. H. Bhadeshia and A. R. Jones: Mater. Sci. Technol. 17 (2001) 693-699.
  8. H. Regle and A. Alamo: J. Phys. IV 3 (1993) C7-727-C7-730.
  9. H. Okada, S. Ukai and M. Inoue: J. Nucl. Sci. Technol. 33 (1996) 936-943.
  10. B. Leng, S. Ukai, Y. Sugino, Q. Tang, T. Narita, S. Hayashi, F. Wan, S. Ohtsuka and T. Kaito: ISIJ Int. 51 (2011) 951-957.
  11. I. L. Dillamore and H. Katoh: Met. Sci. 8 (1974) 73-83.
  12. R. L. Every and M. Hatherly: Texture 1 (1974) 183-194.
  13. W. R. Hibbard and W. R. Tully: Trans. Metall. Soc. AIME 221 (1961) 336-343.
  14. T. Taoka, E. Furubayashi and S. Takeuchi: Tetsu to Hagane 54 (1968) 162-210.
  15. W. B. Hutchinson: Acta Metall. 37 (1989) 1047-1056.
  16. H. Inagaki: Z. Metallkd. 78 (1987) 431-439.
  17. Y. Nagataki and Y. Hosoya: Proc. 11th Int. Conf. on Textures of Materials, ed. by Z. Liang, L. Zuo and Y. Chu, (International academic Publishers, 1996) p. 519.
  18. K. Eloot, K. Okuda, K. Sakata and T. Obara: ISIJ Int. 38 (1998) 602-607.
  19. J. T. Park and J. A. Szpunar: Acta Mater. 51 (2003) 3037-3051.


© 2012 The Japan Institute of Metals
Comments to us :