Materials Transactions Online

Materials Transactions, Vol.53 No.04 (2012) pp.641-644
© 2012 The Japan Institute of Metals

Temperature and Bias Voltage Dependencies of Spin Injection Signals for Co2FeAl0.5Si0.5/n-GaAs Schottky Tunnel Junction

Tatsuya Saito, Nobuki Tezuka and Satoshi Sugimoto

Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan

We investigated the temperature and bias voltage dependencies of spin injection signals for Co2FeAl0.5Si0.5 (CFAS)/n-GaAs schottky tunnel junction. Clear voltage change was observed at 10 K for the junction by 3 Terminal Hanle measurements. The maximum voltage change, ΔVMAX, was decreased with increasing temperature and observed up to 100 K. The estimated spin relaxation time, τ, was 290 ps at 10 K and was also decreased with increasing temperature. In addition, temperature dependency of τ was lower than that of ΔVMAX. The ΔVMAX was increased with increasing bias voltage, and the sign of ΔVMAX was reversed by opposite bias voltage direction. Moreover, bias dependency of ΔVMAX became insensitive with increasing temperature.

(Received 2011/11/29; Accepted 2012/01/10; Published 2012/03/25)

Keywords: full-Heusler alloy, spin injection

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang, K. S. M. Reddy, S. D. Flexner, C. J. Palmstrom and P. A. Crowell: Nature Phys. 3 (2007) 197.
  2. S. P. Dash, S. Sharma, R. S. Patel, M. P. de Jong and R. Jansen: Nature 462 (2009) 491.
  3. T. Suzuki, T. Sasaki, T. Oikawa, M. Shiraishi, Y. Suzuki and K. Noguchi: Appl. Phys. Exp. 4 (2011) 023003.
  4. T. Uemura, T. Akiho, M. Harada, K. Matsuda and M. Yamamoto: Appl. Phys. Lett. 99 (2011) 082108.
  5. G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip and B. J. van Wees: Phys. Rev. B 62 (2000) R4790.
  6. D. L. Smith and R. N. Silver: Phys. Rev. B 64 (2001) 045323.
  7. N. Tezuka, N. Ikeda, A. Miyazaki, S. Sugimoto, M. Kikuchi and K. Inomata: Appl. Phys. Lett. 89 (2006) 112514.
  8. N. Tezuka, N. Ikeda, F. Mitsuhashi and S. Sugimoto: Appl. Phys. Lett. 94 (2009) 162504.
  9. G. Salis, A. Fuhrer, R. R. Schlittler, L. Gross and S. F. Alvarado: Phys. Rev. B 81 (2010) 205323.
  10. T. Saito, N. Tezuka and S. Sugimoto: Mater. Trans. 52 (2011) 370.
  11. T. Saito, N. Tezuka and S. Sugimoto: IEEE Trans. Magn. 47 (2010) 2447.
  12. S. M. Sze: Physics of Semiconductor Devices, 2nd ed., (Wiley, New York, 1981).
  13. H. Kurebayashi, S. J. Steinmuller, J. B. Laloe, T. Trypiniotis, S. Easton, A. Lonescu, J. R. Yates and J. A. C. Bland: Appl. Phys. Lett. 91 (2007) 102114.
  14. J. M. Kikkawa and D. D. Awschalom: Phys. Rev. Lett. 80 (1998) 4313.
  15. M. I. D’yakonov and V. I. Perel: Sov. Phys. Solid State 13 (1971) 3023.
  16. A. Bournel, P. Dollfus, P. Bruno and P. Hesto: Eur. Phys. J. Appl. Phys. 4 (1998) 1.
  17. A. G. Mal’shukov and K. A. Chao: Phys. Rev. B 61 (2000) R2413.
  18. A. A. Kiselev and K. W. Kim: Phys. Rev. B 61 (2000) 13115.
  19. T. P. Pareek and P. Bruno: Phys. Rev. B 65 (2002) 241305(R).
  20. T. Sasaki, T. Oikawa, M. Shiraishi, Y. Suzuki and K. Noguchi: Appl. Phys. Lett. 98 (2011) 012508.
  21. T. Ikoma, T. Katoda and H. Hasegawa: Gallium Arsenide 2nd ed., (Maruzen, 1988).
  22. S. Vutukuri, M. Chshiev and W. H. Butler: J. Appl. Phys. 99 (2006) 08K302.


© 2012 The Japan Institute of Metals
Comments to us :