Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.806-809
© 2011 The Japan Institute of Metals

Abnormal Hydrogen Absorption/Desorption Properties of Nanoporous Pt with Large Lattice Strains

Masataka Hakamada1, Toshiyuki Furukawa1, Tao Yamamoto2, Masaki Takahashi1 and Mamoru Mabuchi1

1Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
2Undergraduate School of Global Engineering, Faculty of Engineering, Kyoto University, Kyoto 606-8501, Japan

Hydrogen absorption/desorption properties of nanoporous Pt fabricated by dealloying were investigated. At high pressure (> 1.3 MPa), the nanoporous Pt released hydrogen during hydrogen pressurization; in contrast, it absorbed hydrogen up to 3.5 atom% during hydrogen depressurization, which have not been seen in current metal/hydride systems including nanoparticles. First-principles calculations suggested that the abnormal hydrogen absorption/desorption properties are due to the relaxation/preservation of the lattice strain in Pt hydride.

(Received 2010/12/3; Accepted 2011/1/17; Published 2011/3/2)

Keywords: hydride, platinum, nanoporous, surface strain

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov and K. Sieradzki: Nature 410 (2001) 450–453.
  2. A. J. Forty and P. Durkin: Philos. Mag. A 42 (1980) 295–318.
  3. C. Xu, L. Wang, X. Mu and Y. Ding: Langmuir 26 (2010) 7437–7443.
  4. J. Biener, A. Wittstock, L. A. Zepeda-Ruiz, M. M. Biener, V. Zielasek, D. Kramer, R. N. Viswanath, J. Weissmüller, M. Bäumer and A. V. Hamza: Nat. Mater. 8 (2009) 47–51.
  5. M. Hakamada, H. Nakano, T. Furukawa, M. Takahashi and M. Mabuchi: J. Phys. Chem. C 114 (2010) 868–873.
  6. M. Yamauchi, H. Kobayashi and H. Kitagawa: ChemPhysChem 10 (2009) 2566–2576.
  7. Y. Isobe, M. Yamauchi, R. Ikeda and H. Kitagawa: Synth. Met. 135–136 (2003) 757–758.
  8. D. V. Pugh, A. Dursun and S. G. Corcoran: J. Mater. Res. 18 (2003) 216–221.
  9. D. V. Pugh, A. Dursun and S. G. Corcoran: J. Electrochem. Soc. 152 (2005) B455–B459.
  10. K. Du, F. Ernst, M. C. Pelsozy, J. Barthel and K. Tillmann: Acta Mater. 58 (2010) 836–845.
  11. Japanese Industrial Standards Committee, JIS H 7201: Method of measurement of pressure-composition-temperature (PCT) relations of hydrogen absorbing alloys.
  12. M. Yamauchi, R. Ikeda, H. Kitagawa and M. Takata: J. Phys. Chem. C 112 (2008) 3294–3299.
  13. T. B. Flanagan, B. S. Bowerman and G. E. Biehl: Scr. Metall. 14 (1980) 443–447.
  14. R. Balasubramaniam: J. Alloy. Compd. 253–254 (1997) 203–206.
  15. C. Langhammer, V. P. Zhdanov, I. Zorić and B. Kasemo: Chem. Phys. Lett. 488 (2010) 62–66.
  16. M. M. C. Allain and B. J. Heuser: Phys. Rev. B 72 (2005) 054102.
  17. J. P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. 77 (1996) 3865–3868.
  18. B. Baranowski, S. Majchrzak and T. B. Flanagan: J. Phys. F: Metal Phys. 1 (1971) 258–261.
  19. W. Grochala and P. P. Edwards: Chem. Rev. 104 (2004) 1283–1315.
  20. R. Li and K. Sieradzki: Phys. Rev. Lett. 68 (1992) 1168–1171.
  21. M. Hakamada and M. Mabuchi: J. Mater. Res. 24 (2009) 301–304.
  22. Y. Ding, Y.-J. Kim and J. Erlebacher: Adv. Mater. 16 (2004) 1897–1900.
  23. M. Di Vece, D. Grandjean, M. J. Van Bael, C. P. Romero, X. Wang, S. Decoster, A. Vantomme and P. Lievens: Phys. Rev. Lett. 100 (2008) 236105.
  24. Y. Lu, J. Y. Huang, C. Wang, S. Sun and J. Lou: Nat. Nanotechnol. 5 (2010) 218–224.


© 2011 The Japan Institute of Metals
Comments to us :