Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.802-805
© 2011 The Japan Institute of Metals

Microstructure Evaluation of Friction Stir Welded AZ91 with CaO Mg Alloy

Don Hyun Choi1, Byung Wook Ahn1, Shae Kwang Kim2, Yun Mo Yeon3, Young Jik Kim1, Sun-Kyu Park4 and Seung Boo Jung1

1School of Advanced Materials Science and Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Gyeonggi-do 440-746, Korea
2Korea Institute of Industrial Technology, 7-47 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea
3Department of Advanced Materials Application, Suwon Science College, 9-10 Botong-li, Jeongnam-myeon, Whasung, Gyeonggi-do 445-745, Korea
4School of Civil and Environmental Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Gyeonggi-do 440-746, Korea

The present study was carried out to evaluate the microstructural properties of a friction stir welded AZ91 with CaO Mg alloy. For this work, friction stir welding (FSW) was performed at a tool rotation speed of 1250 rpm and a traveling speed of 32 mm·min-1. A network of intermetallic compounds (Al2Ca) was observed in the base metal (BM). In the stir zone (SZ), fine grains and intermetallic compound particles were formed due to dynamic recrystalization and mechanical stirring. The hardness profile showed that the hardness of the SZ was higher than that of the BM, probably due to the presence of fine grains and thermally stable intermetallic compounds.

(Received 2010/8/11; Accepted 2011/1/6; Published 2011/4/1)

Keywords: friction stir welding, AZ91, CaO, hardness, thermal stability

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. B. L. Mordike and T. Ebert: Mater. Sci. Eng. A 302 (2001) 37–45.
  2. A. Weisheit, R. Galun and B. L. Mordike: Weld J. 77 (1998) 149s–154s.
  3. S. H. C. Park, Y. S. Sato and H. Kokawa: Scr. Mater. 49 (2003) 161–166.
  4. J. A. Esparza, W. C. Davis and L. E. Murr: J. Mater. Sci. 38 (2003) 941–952.
  5. C. Y. Lee, W. B. Lee, Y. M. Yeon and S. B. Jung: Mater. Sci. Forum 475–479 (2005) 555–558.
  6. W. B. Lee, C. Y. Lee, M. K. Kim, J. I. Yoon, Y. J. Kim, Y. M. Yoen and S. B. Jung: Compos. Sci. Technol. 66 (2006) 1513–1520.
  7. N. Afrin, D. L. Chen, X. Cao and M. Jahazi: Mater. Sci. Eng. A Struct. 472 (2008) 179–186.
  8. L. Commin, M. Dumont, J. E. Masse and L. Barrallier: Acta Mater. 57 (2009) 326–334.
  9. C. Y. Lee, W. B. Lee, Y. M. Yeon and S. B. Jung: Mater. Sci. 486–487 (2005) 249–252.
  10. M. A. Gharacheh, A. H. Kokabi, G. H. Daneshi, B. Shalchi Amirkhiz and R. Sarrafi: Int. J. Mach. Tool. Manu. 46 (2006) 1983–1987.
  11. S. Lim, S. Kim, C. G. Lee, C. D. Yim and S. J. Kim: Metall. Mater. Trans. A 36A (2005) 1609–1612.
  12. D. T. Zhang, M. Suzuki and K. Maruyama: Scr. Mater. 52 (2005) 899–903.
  13. S. K. Kim, Y. J. Kim, J. K. Lee, Y. O. Yoon and H. H. Cho: February 2005: Korea Patent No.10-2005-0016143.
  14. D. B. Lee, L. S. Hong and Y. J. Kim: Mater. Trans. 49 (2008) 1084–1088.
  15. F. Islam and M. Medraj: Canaidan Metal. Quart. 44 (2005) 1–14.


© 2011 The Japan Institute of Metals
Comments to us :