Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.795-801
© 2011 The Japan Institute of Metals

Thermoelectric Properties of Fine-Grained PbTe Bulk Materials Fabricated by Cryomilling and Spark Plasma Sintering

Chia-Hung Kuo1,2, Hsiu-Shan Chien1, Chii-Shyang Hwang1, Ya-Wen Chou2, Ming-Shan Jeng2 and Masahiro Yoshimura1

1Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan, R. O. China
2Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Liujia Shiang, Tainan County 734, Taiwan, R. O. China

Dense fine-grained PbTe bulk materials without oxide phases are fabricated using a process that combines cryomilling (mechanical milling at cryogenic temperature) and spark plasma sintering (SPS). In the process, micro-grained PbTe powder is cryomilled into nanocrystalline powders, which are then rapidly densified into dense bulk samples with fine grains by SPS at 573 K. The effect of cryomilling on the composition ratio, microstructure, and thermoelectric properties of sintered PbTe samples is investigated. Experimental results indicate that when the grain size decreases to the nano-scale, the Seebeck coefficient increases, the thermal conductivity decreases, and the electrical conductivity only slightly changes for all sintered samples. According to the results, the combination of cryomilling and spark plasma sintering can improve the thermoelectric transport properties of PbTe bulk materials.

(Received 2010/9/22; Accepted 2011/1/27; Published 2011/3/30)

Keywords: lead telluride, cryomilling, spark plasma sintering, thermoelectric properties

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. D. M. Rowe (ed.): CRC Handbook of Thermoelectrics, (CRC Press, New York, 1995).
  2. R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn: Nature 413 (2001) 597–602.
  3. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono and K. Koumoto: Nat. Mater. 6 (2007) 129–134.
  4. T. C. Harman, R. J. Taylor, M. P. Walsh and B. E. LaForge: Science 297 (2002) 2229–2232.
  5. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzidis: Science 303 (2004) 818–821.
  6. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren: Science 320 (2008) 634–638.
  7. L. D. Zhao, B. P. Zhang, W. S. Liu, H. L. Zhang and J. F. Li: J. Alloy. Compd. 467 (2008) 91–97.
  8. W. Xie, X. Tang, Y. Yan, Q. Zhang and T. M. Tritt: Appl. Phys. Lett. 94 (2009) 102111.
  9. C. H. Kuo, C. S. Hwang, M. S. Jeng, W. S. Su, Y. W. Chou and J. R. Ku: J. Alloy. Compd. 496 (2010) 687–690.
  10. J. P. Heremans, C. M. Thrush and D. T. Morelli: Phys. Rev. B 70 (2004) 115334.
  11. C. H. Kuo, M. S. Jeng, J. R. Ku, S. K. Wu, Y. W. Chou and C. S. Hwang: J. Electron. Mater. 38 (2009) 1956–1961.
  12. J. Martin, L. Wang, L. Chen and G. S. Nolas: Phys. Rev. B 79 (2009) 115311.
  13. J. Martin, G. S. Nolas, W. Zhang and L. Chen: Appl. Phys. Lett. 90 (2007) 222112.
  14. J. Ye, L. Ajdelsztajn and J. M. Schoenung: Metall. Mater. Trans. A 37 (2006) 2569–2579.
  15. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder: Science 321 (2008) 554–557.
  16. K. Kishimoto and T. Koyanagi: J. Appl. Phys. 92 (2002) 2544–2549.
  17. K. Kishimoto, K. Yamamoto and T. Koyanagi: Jpn. J. Appl. Phys. 42 (2003) 501–508.


© 2011 The Japan Institute of Metals
Comments to us :