Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.787-794
© 2011 The Japan Institute of Metals

A Three Dimensional Cellular Automaton Model for the Prediction of Solidification Morphologies of Brass Alloy by Horizontal Continuous Casting and Its Experimental Verification

De-Chang Tsai and Weng-Sing Hwang

Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan, R. O. China

The purpose of this study is to predict the morphologies of the solidification process for brass alloys (Cu70Zn30 and Cu65Zn35) by horizontal continuous casting (HCC) and to verify its accuracy by the observed experimental results. This study was extended from previous study (predict the solidification microstructure of pure copper rod by vertical continuous casting process). In numerical simulation aspect, finite difference method (FDM) and cellular automaton (CA) model were utilized to solve the macro-temperature field and micro-nucleation and grain growth of brass alloy respectively. From the observed casting experiment, the unidirectionally solidified brass rod could be fabricated by the HCC process with using cooled mold. The cast grain morphology by CAFD model was corresponding to the result of actual casting experiment well.

(Received 2010/11/30; Accepted 2011/1/21; Published 2011/4/1)

Keywords: brass alloy, horizontal continuous casting, solidification microstructure, cellular automaton model, finite difference method

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. W. Oldfield: ASM Trans. 59 (1966) 945.
  2. J. D. Hunt: Mater. Sci. Eng. 65 (1984) 75.
  3. I. Dustin and W. Kurz: Z. Metallkd. 77 (1986) 265.
  4. C. A. Gandin and M. Rappaz: Acta Mater. 42 (1994) 2233.
  5. C. A. Gandin, J. L. Desbiolles, M. Rappaz and P. Thevoz: Metall. Mater. Trans. A 30 (1999) 3153.
  6. M. Rappaz and C. A. Gandin: Acta Mater. 41 (1993) 345.
  7. M. Rappaz, C. A. Gandin, J. L. Desbiolles and P. Thevoz: Metall. Mater. Trans. A 27 (1996) 695.
  8. Y. Hirokazu and O. Itsuo: J. Japan Inst. Metals 61 (1997) 342.
  9. K. Harkki and J. Miettinen: Metall. Trans. B 30 (1999) 75.
  10. Y. T. Ding and G. J. Xu: Foundry Technology 26 (2005) 1075.
  11. M. F. Zhu and C. P. Hong: Metall. Mater. Trans. A 35 (2004) 1555.
  12. H. B. Dong and P. D. Lee: Acta Mater. 53 (2005) 659.
  13. Y. Natsume and K. Ohsasa: ISIJ Int. 46 (2006) 896.
  14. G. Guillemot, C. A. Gandin and M. Bellet: J. Crystal Growth 303 (2007) 58.
  15. X. G. Qu and X. Q. Li: Machin. Design Manuf. 1 (2008) 109.
  16. Y. H. Chang, S. M. Lee, K. Y. Lee and C. P. Hong: ISIJ Int. 38 (1998) 63.
  17. M. F. Zhu and C. P. Hong: ISIJ Int. 42 (2002) 520.
  18. W. Kurz, B. Giovanola and R. Trivedi: Acta Metall. 34 (1986) 823.
  19. K. Harkki and J. Miettinen: Metall. Mater. Trans. B 30B (1999) 75.
  20. Y. T. Ding and G. G. Xu: Foundry Technology 26 (2005) 1075.


[JIM HOME] [JOURNAL ARCHIVES]

© 2011 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp