Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.780-786
© 2011 The Japan Institute of Metals

Construction of Processing Map for Biomedical Co-29Cr-6Mo-0.23C-0.14N Alloy by Using Compression Tests

Yui Yamashita1, Yunping Li2, Hiroaki Matsumoto2, Yuichiro Koizumi2 and Akihiko Chiba2

1Graduate School of Engineering, Tohoku University, Sendai 980-8577, Japan
2Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

The high-temperature deformation behavior of Co-29Cr-6Mo-0.23C-0.14N alloy was investigated by carrying out compression tests; the tests were carried out in the temperature range of 1000–1200°C and strain rates ranging from 0.01 to 30 s-1 with a height reduction of approximately 65%. The optimum hot-working conditions were determined from the processing map based on the dynamic materials model. Dynamic recrystallization was observed to occur over the entire temperature and strain rate range. However, uniformly sized grains were formed for strain rates higher than 1 s-1, which is considered to be the optimum hot-working condition. In addition, authors suggested that in extremely low stacking fault energy alloy, explosive and homogeneous formation of mechanical twinning should be considered to be stable state, and new processing map with more detailed description of deformation mechanism seems necessary in future.

(Received 2010/11/15; Accepted 2011/1/14; Published 2011/3/2)

Keywords: cobalt-chromium-molybdenum-carbon-nitrogen alloy, processing map, correction, twinning, dynamic recrystallization

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. M. G. Shettlemore and K. J. Bundy: Biomaterials 22 (2001) 2215–2228.
  2. H. Y. Lin and J. D. Bumgardner: Biomaterials 25 (2004) 1233–1238.
  3. H. C. Hsu and S. S. Lian: J. Mater. Process. Technol. 138 (2003) 231–235.
  4. H. S. Dobbs and J. L. M. Robertson: J. Mater. Sci. 18 (2004) 391–401.
  5. K. Yamanaka, M. Mori, S. Kurosu et al.: Metall. Mater. Trans. A 40A (2009) 1980.
  6. S. Lee, N. Nomura and A. Chiba: Mater. Trans. 49 (2008) 260–264.
  7. T. Hanawa and T. Yoneyama: kinzoku-biomaterial, (Korona press, 2007) pp.1–33.
  8. A. Chiba: Materia Japan 46 (2007) 194–198.
  9. Y. P. Li, J. S. Yu, T. Otomo, H. Matsumoto, Y. Koizumi and A. Chiba: Appl. Phys. Lett. Submitted.
  10. Y. Yamashita, Y. P. Li, E. Onodera, H. Matsumoto and A. Chiba: Mater. Trans. 51 (2010) 1633–1639.
  11. Y. P. Li, E. Onodera, H. Matsumoto and A. Chiba: Metall. Trans. A 40A (2009) 982–990.
  12. Y. P. Li, E. Onodera and A. Chiba: Metall. Trans. A 51 (2010) 1210–1215.
  13. Y. P. Li, E. Onodera and A. Chiba: Metall. Trans. A 51 (2010) in print.
  14. A. K. Koul and J. P. Immarigeon: Acta Metall. 35 (1987) 1791–1805.
  15. M. Mataya and V. Sackschewsky: Metall. Mater. Trans. A 25 (1994) 2727–2752.
  16. Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, K. A. Lark and D. R. Barker: Metall. Trans. 15A (1984) 1883–1892.
  17. H. Ziegler: Progress in Solid Mechanics, 4, ed. by I. N. Sneddon and R. Hill, (Wiley, New York, 1965) pp.91–193.
  18. Y. V. R. K. Prasad and T. Seshacharyulu: Int. Mater. Rev. 43 (1998) 243–258.
  19. I. Kartika, Y. P. Li, H. Matsumoto and A. Chiba: Mater. Trans. 50 (2009) 2277–2284.
  20. P. V. Sivaprasad, S. Venugopal, Sridhar Venugopal, V. Maduraimuthu, M. Vasudevan, S. L. Mannan, Y. V. R. K. Prasad and R. C. Chaturvedi: JMPT 132 (2003) 262–268.
  21. T. Ericsson: Acta Metall. 14 (1966) 853–65.
  22. J. Talonen and H. Hanninen: Acta Mater. 55 (2007) 6108–6118.


© 2011 The Japan Institute of Metals
Comments to us :