Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.740-745
© 2011 The Japan Institute of Metals

Microwave Absorption Properties of Polymer Modified Ni-Zn Ferrite Nanoparticles

Kazuaki Shimba, Kiyotaka Furuta, Nobuyuki Morimoto, Nobuki Tezuka and Satoshi Sugimoto

Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba-yama, Sendai 980-8579, Japan

Polymer composites of magnetic particles are widely used as microwave absorbers. An effective method for obtaining thinner microwave absorbers for device design is increasing the volume fraction of magnetic nanoparticles by enhancing the permeability of composites. In this study, composites were prepared using Ni-Zn ferrite nanoparticles surface-modified with 4-META (4-methacryloylioxyethyl trimellitate anhydride) and cross-linked with PEG-4SH (pentaerythritol tetra-polyethylene glycol ether with four thiol-modified terminals). These composites have a high volume fraction of nanoparticles (up to 72 vol%) and permeability (μr max'' = 5.9). In addition, the prepared composites showed good microwave absorption properties (R.L. < -20 dB) with a smaller matching thickness than conventional microwave absorber using spinel-type ferrite.

(Received 2010/10/21; Accepted 2011/1/18; Published 2011/3/2)

Keywords: magnetic nanoparticles, nickel-zinc ferrite, surface modification, cross-linking, microwave absorbers

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Y. Naito: Electromagnetic Wave Absorber, (Ohmsha, Tokyo, 1987).
  2. O. Hashimoto: Technologies & Applications of Wave Absorber II, (CMC, Tokyo, 2003).
  3. O. Hashimoto: Introduction to Wave Absorber, (Morikita Publication, Tokyo, 1997).
  4. Y. Naito and K. Suetake: IEEE Trans. Microwave Theory Tech. 19 (1971) 65–72.
  5. D. Y. Kim, Y. C. Chung, T. W. Kang and H. C. Kim: IEEE Trans. Magn. 32 (1996) 555–558.
  6. M. Matsumoto and Y. Miyata: J. Magn. Soc. Jpn. 22 (1998) 885–888.
  7. T. Maeda, S. Sugimoto, T. Kagotani, D. Book, K. Inomata, H. Ota and Y. Houjou: Mater. Trans. 42 (2001) 446–449.
  8. A. Saito, M. Ogawa, K. Tsutsui, H. Endo and S. Yahagi: Materia Japan 38 (1999) 46–48.
  9. S. Yoshida, M. Sato, E. Sugawara and Y. Shimada: J. Appl. Phys. 85 (1999) 4636–4638.
  10. K. Shimba, K. Furuta, N. Morimoto, N. Tezuka and S. Sugimoto: Mater. Trans., submitted.
  11. N. Morimoto, I. Sato, A. Watanabe, N. Nakabayashi, Y. Iwasaki and K. Ishihara: Jpn. J. Polymer Sci. Technol. 59 (2002) 432–437.
  12. Z. Beji, T. Ben Chaabane, L. S. Smiri, S. Ammar, F. Fievet, N. Jouini and J. M. Greneche: Phys. Stat. Sol. (a) 203 (2006) 504–512.
  13. S. Chikazumi, K. Ohta, K. Adachi, N. Tsuya and Y. Ishikawa: Handbook of Magnetic Materials, (Asakura Shoten, Tokyo, 1975).
  14. B. J. Lindberg, K. Hamrin, G. Johansson, U. Gelius, A. Fahlman, C. Nordling and K. Siegbahn: Physica Scripta 1 (1970) 286–298.
  15. K. Suzuki, K. Mori, Y. Rongbin and H. Hirahara: Jpn. J. Polymer Sci. Technol. 60 (2003) 108–114.
  16. TDK catalog: microwave absorber IR series.


© 2011 The Japan Institute of Metals
Comments to us :