Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.734-739
© 2011 The Japan Institute of Metals

Effects of Electron Beam Irradiation on Elasticity of CFRTP (CF/PEEK)

Hiroaki Takei1, Michelle Salvia2, Alain Vautrin3, Akira Tonegawa4 and Yoshitake Nishi1,2,3,4

1Graduate School of Engineering, Tokai University, Hiratsuka 259-1292, Japan
2Ecole Centrale de Lyon, Ecully Cedex 69134, France
3Department of Mechanical and Materials Engineering, Ecole Nationale Superieure des Mines de Saint-Etienne, Saint-Étienne Cedex 2 42023, France
4Graduate School of Science & Technology, Tokai University, Hiratsuka 259-1292, Japan

Homogeneous low voltage electron beam irradiation (HLEBI) improved the elasticity indicated by both flexural modulus (Ef) and the maximum slope value ((dσ/dε)max) of the bending stress–strain curve of carbon fiber reinforced thermoplastic polyetheretherketone (CFRTP) composite sheets with 0.50 mm thickness, although the penetration depth estimated was from 0.14 to 0.21 mm on both side surfaces. HLEBI remarkably enhanced both Ef and (dσ/dε)max. The Ef at middle cumulative probability (PE) of 0.50 for CFRTP irradiated at 0.30 MGy (kJg-1) was 3.3 GPa, which was 27% higher (2.6 GPa) than for CFRTP before irradiation. Moreover, (dσ/dε)max at middle cumulative probability (PE = 0.50) was more than 4.9 GPa for CFRTP irradiated at 0.30 MGy. The interfacial friction force, as well as the strengthening of both carbon fiber and polyetheretherketone probably contributed to the HLEBI effects to enhance both Ef and (dσ/dε)max in the CFRTP.

(Received 2010/10/22; Accepted 2011/2/1; Published 2011/3/30)

Keywords: carbon fiber reinforced polymers (CFRTP), polyetheretherketone, carbon fiber, electron beam irradiation, flexural modulus

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. D. K. Thomas: Plastics Rubber Int. 8 (1983) 53–57.
  2. M. B. Dowell: Plastics Eng. 33 (1977) 31–32.
  3. S. Egusa: J. Mater. Sci. 23 (1988) 2753–2760.
  4. T. Takahashi, T. Morishita and Y. Nishi: J. Jpn. Inst. Metals 69 (1988) 2753–2760.
  5. A. Mizutani and Y. Nishi: Mater. Trans. 44 (2003) 1857–1860.
  6. K. Oguri, N. Iwataka, A. Tonegawa, Y. Hirose, K. Takayama and Y. Nishi: J. Mater. Res. 16 (2001) 553–557.
  7. K. Oguri, K. Fujita, M. Takahashi, Y. Omori, A. Tonegawa, N. Honda, M. Ochi, K. Takayama and Y. Nishi: J. Mater. Res. 13 (1998) 3368–3371.
  8. K. Oguri, N. Iwatani, H. Izumi, A. Tonegawa, K. Takayama and Y. Nishi: Proc. 2nd Japan-France Seminar on Intelligent Materials and Structures, (University of Louis Pasteur Strasbourg, France) (1998) pp.142–144.
  9. Y. Nishi, T. Toriyama, K. Oguri, A. Tonegawa and K. Takayama: J. Mater. Res. 16 (2001) 1632–1635.
  10. Y. Nishi, A. Mizutani, A. Kimura, T. Toriyama, K. Oguri and A. Tonegawa: J. Mater. Sci. 38 (2003) 89–92.
  11. Y. Nishi, K. Inoue and M. Salvia: Mater. Trans. 47 (2006) 2846–2851.
  12. H. Kosuda and K. Nakama: Kagaku Keizai 28 (1981) 28–34.
  13. H. Sato, K. Iwata, A. Tonegawa and Y. Nishi: J. Jpn. Inst. Metals 72 (2008) 526–531.
  14. Y. Nishi, A. Mizutani and N. Uchida: J. Thermoplastic Compos. Mater. 17 (2004) 289–302.
  15. M. Makihara: Plastics 53 (2002) 119–122.
  16. K. Komai, K. Minoshima and K. Tanaka: Trans. Jpn. Soc. Mech. Eng. A 64 (1998) 2300–2307.
  17. Y. Nishi, H. Takei, K. Takata, K. Iwata, M. Salvia and A. Vautrin: Mater. Trans. 50 (2009) 2826–2832.
  18. Japanese Industrial Standards Committee: JIS K7074 (1998).
  19. R. Christenhusz and L. Reimer: Z. Angew. Phys. 23 (1967) 396–404.
  20. W. F. Libby: Anal. Chem. 19 (1947) 2–6.
  21. Kyushu Branch, The Japan society for Analytical Chemistry: Introduction to instrumental analysis, (Nankodo co., Ltd. 1996) pp.214–229.
  22. T. Sasuga, M. Hagiwara, T. Odajima, H. Sakai, T. Nakakura and M. Masutani: JAERI-M reports, (JAERI-M 87-048, 1987).
  23. T. Nishida and E. Yasuda: Evaluation of dynamic properties of ceramics (in Japanese: Ceramics no rikigaku tokusei hyouka) (Nikkan Kogyou Shimbun Sha, Tokyo, 1986) pp.50–51.


© 2011 The Japan Institute of Metals
Comments to us :