Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.704-708
© 2011 The Mining and Materials Processing Institute of Japan

Activity Measurement of Titanium-Tin Alloys by Knudsen Effusion Method

Satoshi Itoh1 and Yosuke Inoue2

1Innovation Plaza, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
2Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan

The activity of tin in Ti-Sn alloy has been determined at 1400 K by Knudsen effusion method with electrobalance. The activity of titanium was calculated by applying the Gibbs-Duhem relation to the Ti-Sn binary system. The standard Gibbs energy of the formation of intermetallic compound such as Ti3Sn, Ti2Sn, Ti5Sn3 and Ti6Sn5 was calculated at 1400 K by using the activities of components. X-ray diffraction studies were additionally conducted for some samples after the activity measurement. The identified phases were consistent with the phase diagram reported in the literature.

(Received 2010/7/20; Accepted 2010/12/21; Published 2011/3/2)

Keywords: titanium-tin binary system, titanium base alloys, thermodynamic properties, activity, Knudsen effusion method

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. F. Sommer, K. H. Klappert, I. Arpshofen and B. Predel: Z. Metallk. 73 (1982) 581–584.
  2. S. Wagner and G. R. St. Pierre: Metall. Trans. 5 (1974) 887–889.
  3. T. Furukawa and E. Kato: Tetsu-to-Hagane 60 (1974) S432, 92.
  4. M. Maeda, T. Kiwake, K. Shibuya and T. Ikeda: Mater. Sci. Eng. A 239–240 (1997) 276–280.
  5. R. N. Anderson and G. S. Selvaduray: Proc. Conf. on Titanium 1980, Science and Technology, H. Kimura, O. Izumi (Eds), Vol.4, Kyoto, Japan, (TMS/AIME, Warrendale, PA, 1980) pp.3009–3018.
  6. M. J. Pool, R. Speiser and G. R. St. Pierre: Trans. Met. Soc. AIME 239 (1967) 1180–1186.
  7. M. Hoch and R. Viswanathan: Metall. Trans. 2 (1971) 2765–2767.
  8. M. Hoch and R. J. Usell Jr.: Metall. Trans. 2 (1971) 2627–2632.
  9. E. J. Rolinski, M. Hoch and C. J. Oblinger: Metall. Trans. 2 (1971) 2613–2618.
  10. J. V. Hackworth, M. Hoch and H. L. Gegel: Metall. Trans. 2 (1971) 1799–1805.
  11. U. V. Choudary, K. A. Gingerich and L. R. Cornwell: J. Less. Common Met. 50 (1976) 201–211.
  12. M. Pelino, S. K. Gupta, L. R. Cornwell and K. A. Gingerich: J. Less. Common Met. 68 (1979) 31–38.
  13. M. Arita, R. Kinaka and M. Someno: Metall. Trans. A 10A (1979) 529–534.
  14. M. Arita, I. Shimizu, K. Goto and M. Someno: Abstracts of the 1981 Annual Meeting of the Japan Inst. Metals, (1981) p.188.
  15. P. J. Meschter and W. L. Worrell: Metall. Trans. A 7A (1976) 299–305.
  16. F. Yin, J. C. Tedenac and F. Gascoin: Computer Coupl. Phase Diagram Thermochem. 31 (2007) 370–379.
  17. R. A. Rapp: Physicochemical Measurements in Metal Research, Vol.IV, Part 1, (Interscience, 1970) pp.21–94.
  18. P. Atkins and J. de Paula: ATKIN'S Physical Chemistry, 7th ed., (Oxford University Press Inc., New York, 2002) pp.182–187.
  19. I. Barin ed.: Thermochemical Data of Pure Substances, 2nd ed., (Federal Republic of Germany, 1993) pp.1520–1521.
  20. I. Barin ed.: Thermochemical Data of Pure Substances, 2nd ed., (Federal Republic of Germany, 1993) pp.1392–1393.
  21. S. Itoh and T. Azakami: J. Japan Inst. Metals 48 (1984) 405–413.
  22. L. S. Darken and R. W. Gurry: Physical Chemistry of Metals, (McGraw-Hill Book Company, 1953) pp.235–282.


© 2011 The Japan Institute of Metals
Comments to us :