Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.704-708
© 2011 The Mining and Materials Processing Institute of Japan

Activity Measurement of Titanium-Tin Alloys by Knudsen Effusion Method

Satoshi Itoh1 and Yosuke Inoue2

1Innovation Plaza, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
2Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan

The activity of tin in Ti-Sn alloy has been determined at 1400 K by Knudsen effusion method with electrobalance. The activity of titanium was calculated by applying the Gibbs-Duhem relation to the Ti-Sn binary system. The standard Gibbs energy of the formation of intermetallic compound such as Ti3Sn, Ti2Sn, Ti5Sn3 and Ti6Sn5 was calculated at 1400 K by using the activities of components. X-ray diffraction studies were additionally conducted for some samples after the activity measurement. The identified phases were consistent with the phase diagram reported in the literature.

(Received 2010/7/20; Accepted 2010/12/21; Published 2011/3/2)

Keywords: titanium-tin binary system, titanium base alloys, thermodynamic properties, activity, Knudsen effusion method

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. F. Sommer, K. H. Klappert, I. Arpshofen and B. Predel: Z. Metallk. 73 (1982) 581–584.
  2. S. Wagner and G. R. St. Pierre: Metall. Trans. 5 (1974) 887–889.
  3. T. Furukawa and E. Kato: Tetsu-to-Hagane 60 (1974) S432, 92.
  4. M. Maeda, T. Kiwake, K. Shibuya and T. Ikeda: Mater. Sci. Eng. A 239–240 (1997) 276–280.
  5. R. N. Anderson and G. S. Selvaduray: Proc. Conf. on Titanium 1980, Science and Technology, H. Kimura, O. Izumi (Eds), Vol.4, Kyoto, Japan, (TMS/AIME, Warrendale, PA, 1980) pp.3009–3018.
  6. M. J. Pool, R. Speiser and G. R. St. Pierre: Trans. Met. Soc. AIME 239 (1967) 1180–1186.
  7. M. Hoch and R. Viswanathan: Metall. Trans. 2 (1971) 2765–2767.
  8. M. Hoch and R. J. Usell Jr.: Metall. Trans. 2 (1971) 2627–2632.
  9. E. J. Rolinski, M. Hoch and C. J. Oblinger: Metall. Trans. 2 (1971) 2613–2618.
  10. J. V. Hackworth, M. Hoch and H. L. Gegel: Metall. Trans. 2 (1971) 1799–1805.
  11. U. V. Choudary, K. A. Gingerich and L. R. Cornwell: J. Less. Common Met. 50 (1976) 201–211.
  12. M. Pelino, S. K. Gupta, L. R. Cornwell and K. A. Gingerich: J. Less. Common Met. 68 (1979) 31–38.
  13. M. Arita, R. Kinaka and M. Someno: Metall. Trans. A 10A (1979) 529–534.
  14. M. Arita, I. Shimizu, K. Goto and M. Someno: Abstracts of the 1981 Annual Meeting of the Japan Inst. Metals, (1981) p.188.
  15. P. J. Meschter and W. L. Worrell: Metall. Trans. A 7A (1976) 299–305.
  16. F. Yin, J. C. Tedenac and F. Gascoin: Computer Coupl. Phase Diagram Thermochem. 31 (2007) 370–379.
  17. R. A. Rapp: Physicochemical Measurements in Metal Research, Vol.IV, Part 1, (Interscience, 1970) pp.21–94.
  18. P. Atkins and J. de Paula: ATKIN'S Physical Chemistry, 7th ed., (Oxford University Press Inc., New York, 2002) pp.182–187.
  19. I. Barin ed.: Thermochemical Data of Pure Substances, 2nd ed., (Federal Republic of Germany, 1993) pp.1520–1521.
  20. I. Barin ed.: Thermochemical Data of Pure Substances, 2nd ed., (Federal Republic of Germany, 1993) pp.1392–1393.
  21. S. Itoh and T. Azakami: J. Japan Inst. Metals 48 (1984) 405–413.
  22. L. S. Darken and R. W. Gurry: Physical Chemistry of Metals, (McGraw-Hill Book Company, 1953) pp.235–282.


[JIM HOME] [JOURNAL ARCHIVES]

© 2011 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp