Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.663-671
© 2011 The Japan Institute of Metals

Alloying Behavior of Ni3M-Type Compounds with D0a Structure

H. Sugimura, Y. Kaneno and T. Takasugi

Department of Materials Science, Osaka Prefecture University, Sakai 599-8531, Japan

The atom substitution preference of ternary additions in Ni3M-type GCP (geometrically close-packed) compounds with D0a structure was determined from the direction of single-phase region of the GCP phase on the reported ternary phase diagrams. In Ni3Nb, Co and Cu preferred the substitution for Ni-site, Hf, Ta, Ti, V and W the substitution for Nb-site, and Fe the substitution for both sites. In Ni3Ta, Co, Cu, Fe, Ir, Mn and Re preferred the substitution for Ni-site, Mo and Nb the substitution for Ta-site, and Al and Cr the substitution for both sites. In Ni3Mo, Pd and W preferred the substitution for Ni-site, and Al, Nb, Ta, Ti and Zr the substitution for Mo-site. The thermodynamic model, which was based on the change in heat of formation of the host compound by a small addition of ternary solute, was applied to predict the atom substitution preference of ternary additions. The heat of compound formation used in the thermodynamic calculation was derived from Miedema's formula. Good agreement was obtained between the thermodynamic model and the result of the literature search. For Ni3Mo, with a small negative heat of formation, a weak binding force between the constituent elements is often enhanced by the addition of the ternary elements that substitute for Mo-site.

(Received 2010/11/19; Accepted 2011/1/14; Published 2011/3/2)

Keywords: geometrically close-packed (GCP) phase, site occupancy, Ni3M compound, D0a structure, thermodynamic model

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. J. H. N. Van Vucht: J. Less-common Met. 11 (1966) 308–322.
  2. A. K. Sinha: Trans. Metall. Soc. AIME 245 (1969) 911–917.
  3. A. K. Niessen, A. R. Miedema, F. R. de Boer and R. Boom: Physica B 152 (1988) 303–346.
  4. R. T. Quinn, R. W. Kraft and R. W. Hertzberg: Trans. Am. Soc. Met. 62 (1969) 38–44.
  5. Y. Nunomura, Y. Kaneno, H. Tsuda and T. Takasugi: Intermetallics 12 (2004) 389–399.
  6. K. Ohira, Y. Kaneno and T. Takasugi: Mater. Sci. Eng. A 399 (2005) 332–343.
  7. K. Ohira, Y. Kaneno, H. Tsuda and T. Takasugi: Intermetallics 14 (2006) 367–376.
  8. Y. Nunomura, Y. Kaneno, H. Tsuda and T. Takasugi: Acta Mater. 54 (2006) 851–860.
  9. S. Shibuya, Y. Kaneno, M. Yoshida, T. Shishido and T. Takasugi: Intermetallics 15 (2007) 119–127.
  10. S. Shibuya, Y. Kaneno, H. Tsuda and T. Takasugi: Intermetallics 15 (2007) 338–348.
  11. S. Ochiai, Y. Oya and T. Suzuki: Acta Metall. 32 (1984) 289–298.
  12. A. R. Miedema, R. Boom and F. R. de Boer: Crystal Structure and Chemical Bonding in Inorganic Chemistry, (American Elsevier, North-Holland, 1975) p.163.
  13. A. R. Miedema and P. F. du Chatel: Theory of Alloy Phase Formation, (Metall. Soc. AIME, 1980) p.334.
  14. Y. Liu, T. Takasugi and O. Izumi: Metall. Trans. A 17 (1986) 1433–1439.
  15. H. Sugimura, Y. Kaneno and T. Takasugi: Mater. Trans. 51 (2010) 72–77.
  16. H. Sugimura, Y. Kaneno and T. Takasugi: J. Alloy. Compd. 496 (2010) 116–121.
  17. T. Suzuki, Y. Oya and S. Ochiai: Metall. Trans. 15A (1984) 173–181.
  18. L. A. Panteleimonov, O. G. Burtseva and V. V. Zubenko: Moscow Univ. Chem. Bull. 37 (1982) 71–72.
  19. K. P. Gupta, S. B. Rajendraprasad and A. K. Jena: J. Alloy Phase Diagrams 6 (1990) 14–18.
  20. A. A. Kodentsov, S. F. Dunaev, E. M. Slyusarenko and E. M. Sokolovskaya: Moscow Univ. Chem. Bull. 41 (1986) 58–61.
  21. K. P. Gupta: Indian Inst. Metals 1 (1990) 49–70.
  22. V. N. Svechnikov and V. M. Pan: Dopov. Akad. Nauk Ukr. RSR (1960) 634–637.
  23. A. A. Kodentsov, S. F. Dunaev and E. M. Slyusarenko: Moscow Univ. Chem. Bull. 43 (1988) 90–93.
  24. V. Raghavan: Indian Inst. Metals 6B (1992) 1025–1027.
  25. K. P. Gupta: Indian Inst. Metals 2 (1991) 163–173.
  26. L. I. Pryakhina, K. P. Myasnikova, V. V. Burnasheva, E. E. Cherkashin and V. Y. Markiv: Sov. Powder Metall. Met. Ceram. 5 (1966) 643–650.
  27. K. P. Gupta: Indian Inst. Metals 2 (1991) 177–184.
  28. K. P. Gupta: Indian Inst. Metals 2 (1991) 185–198.
  29. G. A. Tikhankin, L. L. Meshkov and E. M. Sokolovskaya: Moscow Univ. Chem. Bull. 31 (1976) 88–90.
  30. P. Nash and D. R. F. West: Met. Sci. 13 (1979) 670–676.
  31. L. Kaufman: Calphad 15 (1991) 261–282.
  32. A. Zakharov: Ternary Alloys VCH 7 (1993) 483–497.
  33. Y. M. Hong, Y. Mishima and T. Suzuki: Mater. Res. Soc. Symp. Proc. 133 (1989) pp.429–440.
  34. P. Willemin, O. Dugué, M. Durand Charre and J. H. Davidson: Mater. Sci. Technol. 2 (1986) 344–348.
  35. S. N. Nesterenko, A. K. Osipov, L. L. Meshkov and E. M. Sokolovskaya: Moscow Univ. Chem. Bull. 35 (1980) 64–66.
  36. S. U. Schittny, E. Lugscheider and O. Knotek: Thermochim. Acta 85 (1985) 167–170.


[JIM HOME] [JOURNAL ARCHIVES]

© 2011 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp