Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.654-657
© 2011 The Japan Institute of Metals

Enhanced Electrical Conductivities of Complex Hydrides Li2(BH4)(NH2) and Li4(BH4)(NH2)3 by Melting

Yu Zhou1, Motoaki Matsuo1, Yohei Miura1, Hitoshi Takamura2, Hideki Maekawa2, Arndt Remhof3, Andreas Borgschulte3, Andreas Züttel3, Toshiya Otomo4 and Shin-ichi Orimo1

1Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
2Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
3Empa, Swiss Federal Laboratories for Materials Science and Technology, Division of Hydrogen and Energy, Dübendorf, 8600, Switzerland
4Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan

The electrical conductivities of complex hydrides Li2(BH4)(NH2) and Li4(BH4)(NH2)3 consisting of (BH4)- and (NH2)- anions are investigated focusing on their low melting temperatures (365 K for Li2(BH4)(NH2) and 490 K for Li4(BH4)(NH2)3). The two hydrides show lithium fast-ion conductivities of about 1× 10-4 S·cm-1 at room temperature. After melting, the total ion conductivities of Li2(BH4)(NH2) and Li4(BH4)(NH2)3 reach 6× 10-2 S·cm-1 (378 K) and 2× 10-1 S·cm-1 (513 K), respectively. The crystal structure and local atomistic structures closely correlated with the lithium ion conduction before and after melting are also discussed.

(Received 2010/9/15; Accepted 2011/2/3; Published 2011/4/1)

Keywords: complex hydride, lithium ion conduction, melting

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel and C. M. Jensen: Chem. Rev. 107 (2007) 4111–4132.
  2. M. Matsuo, Y. Nakamori, S. Orimo, H. Maekawa and H. Takamura: Appl. Phys. Lett. 91 (2007) 224103-1–3.
  3. M. Matsuo, H. Takamura, H. Maekawa, H.-W. Li and S. Orimo: Appl. Phys. Lett. 94 (2009) 084103-1–3.
  4. H. Maekawa, M. Matsuo, H. Takamura, M. Ando, Y. Noda, T. Karahashi and S. Orimo: J. Am. Chem. Soc. 131 (2009) 894–895.
  5. H. Oguchi, M. Matsuo, J. S. Hummelshøj, T. Vegge, J. K. Nørskov, T. Sato, Y. Miura, H. Takamura, H. Maekawa and S. Orimo: Appl. Phys. Lett. 94 (2009) 141912-1–3.
  6. Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta and M. Wakihara: Solid State Commun. 86 (1993) 689–693.
  7. A. Martínez-Juárez, J. M. Rojo, J. E. Iglesias and J. Sanz: Chem. Mater. 7 (1995) 1857–1862.
  8. M. Tachez, J. P. Malugani, R. Mercier and G. Robert: Solid State Ionics 14 (1984) 181–185.
  9. K. Takada, N. Aotani, K. Iwamoto and S. Kondo: Solid State Ionics 86–88 (1996) 877–882.
  10. R. Kanno and M. Murayama: J. Electrochem. Soc. 148 (2001) A742–A746.
  11. F. Mizuno, A. Hayashi, K. Tadanaga and M. Tatsumisago: Adv. Mater. 17 (2005) 918–921.
  12. B. A. Boukamp and R. A. Huggins: Phys. Lett. A 72 (1979) 464–466.
  13. M. Matsuo, A. Remhof, P. Martelli, R. Caputo, M. Ernst, Y. Miura, T. Sato, H. Oguchi, H. Maekawa, H. Takamura, A. Borgschulte, A. Züttel and S. Orimo: J. Am. Chem. Soc. 131 (2009) 16389–16391.
  14. M. Matsuo and S. Orimo: Adv. Ener. Mater. in press.
  15. T. Noritake, M. Aoki, S. Towata, A. Ninomiya, Y. Nakamori and S. Orimo: Appl. Phys. A 83 (2006) 277–279.
  16. G. P. Meisner, M. L. Scullin, M. P. Balogh, F. E. Pinkerton and M. S. Meyer: J. Phys. Chem. B 110 (2006) 4186–4192.
  17. P. A. Chater, W. I. F. David, S. R. Johnson, P. P. Edwards and P. A. Anderson: Chem. Commun. (2006) 2439–2441.
  18. P. A. Chater, W. I. F. David and P. A. Anderson: Chem. Commun. (2007) 4770–4772.
  19. H. Wu, W. Zhou, T. J. Udovic, J. J. Rush and T. Yildirim: Chem. Mater. 20 (2008) 1245–1247.
  20. F. Izumi and T. Ikeda: Mater. Sci. Forum 321–324 (2000) 198–203.
  21. Electrochemical Aspects of Ionic Liquids, edited by H. Ohno (Wiley Interscience, New York, 2005) p.62–69.
  22. S. Gomes, H. Hagemann and K. Yvon: J. Alloy. Compd. 346 (2004) 206–210.
  23. J. P. O. Bohger, R. R. Eßmann and H. Jacobs: J. Mol. Struct. 348 (1995) 325–328.
  24. D. E. Farrell, D. Shin and C. Wolverton: Phys. Rev. B 80 (2009) 224201-1–7.
  25. J. P. Singer, M. S. Meyer, R. M. Speer, Jr., J. E. Fischer and F. E. Pinkerton: J. Phys. Chem. C 113 (2009) 18927–18934.
  26. The validity of formation of stoichiometric Li4(BH4)(NH2)3 after sample preparation is that nonstoichiometric body centered cubic phases are not stable at the heat treatment temperature 403 K.
  27. Y. Kawakita, S. Tahara, H. Fujii, S. Kohara and S. Takeda: J. Phys.: Condens. Matter 19 (2007) 335201-1–16.


[JIM HOME] [JOURNAL ARCHIVES]

© 2011 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp