Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.651-653
© 2011 The Japan Institute of Metals

Hydrogen Releasing of Lithium Amidoborane-LiNH2BH3

Zaixing Yang, Yan Wang, Jing Liang and Jun Chen

Institute of New Energy Material Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China

This paper reports on the preparation and hydrogen releasing of lithium amidoborane (LiNH2BH3, LiAB). LiAB is synthesized by a wet-chemical route through the direct interaction of LiH with NH3BH3 in tetrahydrofuran (THF) at room temperature. The structure of the as-prepared sample is investigated using X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. The thermal decomposition process is determined by temperature programmed desorption/mass spectrometer (TPD/MS). The results show that the as-prepared LiAB starts to release H2 at the temperature of 70.9°C, which is much lower than that of pure AB, while detectable NH3 releasing should be controlled.

(Received 2010/10/6; Accepted 2010/11/8; Published 2011/4/1)

Keywords: lithium amidoborane, wet-chemical route, thermal decomposition, NH3, hydrogen storage materials

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Y. Nakamori, H. Li, K. Miwa, S. Towata and S. Orimo: Mater. Trans. 47 (2006) 1898–1901.
  2. P. Chen and M. Zhu: Mater. Today 11 (2008) 36–43.
  3. B. Peng and J. Chen: Coordin. Chem. Rev. 253 (2009) 2805–2813.
  4. S. G. Shore and R. W. Parry: J. Am. Chem. Soc. 77 (1955) 6084–6085.
  5. M. Chandra and Q. Xu: J. Power Sources 156 (2006) 190–194.
  6. F. H. Stephens, V. Pons and R. T. Baker: Dalton Trans. 25 (2007) 2613–2626.
  7. B. Peng and J. Chen: Energy Environ. Sci. 1 (2008) 479–483.
  8. A. Gutowska, L. Y. Li, Y. S. Shin, C. M. M. Wang, X. H. S. Li, J. C. Linehan, R. S. Smith, B. D. Kay, B. Schmid, W. Shaw, M. Gutowski and T. Autrey: Angew. Chem. Int. Ed. 44 (2005) 3578–3582.
  9. F. Y. Cheng, H. Ma, Y. M. Li and J. Chen: Inorg. Chem. 46 (2007) 788–794.
  10. Z. Xiong, C. K. Yong, G. Wu, P. Chen, W. Shaw, A. Karkamkar, T. Autrey, M. O. Jones, S. R. Johnson, P. P. Edwards and W. I. F. David: Nat. Mater. 7 (2008) 138–141.
  11. X. Kang, Z. Fang, L. Kong, H. Cheng, X. Yao, G. Lu and P. Wang: Adv. Mater. 20 (2008) 2756–2759.
  12. H. Wu, W. Zhou and T. Yildirim: J. Am. Chem. Soc. 130 (2008) 14834–14839.
  13. K. J. Fijalkowskia and W. Grochala: J. Mater. Chem. 19 (2009) 2043–2050.
  14. A. T. Luedtke and T. Autrey: Inorg. Chem. 49 (2010) 3905–3910.
  15. S. M. Lee, X. Kang, P. Wang, H. Cheng and Y. H. Lee: ChemPhysChem 10 (2009) 1825–1833.
  16. J. Zhao, J. Shi, X. Zhang, F. Cheng, J. Liang, Z. Tao and J. Chen: Adv. Mater. 22 (2010) 394–397.


© 2011 The Japan Institute of Metals
Comments to us :