Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.647-650
© 2011 The Japan Institute of Metals

Cooperative Catalysis on the Dehydrogenation of NdCl3 Doped LiBH4-MgH2 Composites

H. Wang, H. L. Zhang, C. Luo, T. Sun and M. Zhu

School of Materials Science and Engineering, South China of University of Technology, Guangzhou, 510640, P. R. China

To improve the dehydrogenation properties of LiBH4, the MgH2 and NdCl3 were added with different modes by ball-milling, and their influences on the decomposition of LiBH4 were investigated by performing X-ray diffraction (XRD) analysis and dehydriding kinetic measurements. The results show that adding either NdCl3 or MgH2 alone could not promote the decomposition of LiBH4. But for the NdCl3 doped LiBH4-MgH2 composites, not only the decomposition of MgH2 is accelerated, but also the dehydrogenation rate and capacity of LiBH4 are greatly enhanced. The kinetic improvement is attributed to a cooperative catalytic role arising from dual addition of MgH2 and NdCl3. The NdH2 phase, resulting from reaction between MgH2 and NdCl3, might be responsible for the enhanced dehydrogenation of LiBH4.

(Received 2010/10/8; Accepted 2011/1/11; Published 2011/2/23)

Keywords: hydrogen storage materials, LiBH4, MgH2, NdCl3, cooperative catalysis

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. L. Schlapbach and A. Züttel: Nature 414 (2001) 353–358.
  2. S. Satyapal, J. Petrovic, C. Read, G. Thomas and G. Ordaz: Catalysis Today 120 (2007) 246–256.
  3. T. K. M and D. H. Gregory: Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 105 (2009) 21–54.
  4. S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel and C. M. Jensen: Chem. Rev. 107 (2007) 4111–4132.
  5. P. Chen and M. Zhu: Mater. Today 11 (2008) 36–43.
  6. B. Sakintuna, F. Lamari-Darkrim and M. Hirscher: Int. J. Hydrogen Energy 32 (2007) 1121–1140.
  7. Development and Demonstration Plan; U.S. Department of Energy: Washington, D.C.: 2009; available at:
  8. A. Züttel, P. Wenger, S. Rentsch, P. Sudan, P. Mauron and C. Emmenegger: J. Power Sources 118 (2003) 1–7.
  9. X. B. Yu, D. M. Grant and G. S. Walker: J. Phys. Chem. C 112 (2008) 11059–11062.
  10. M. Au and A. R. Jurgensen: J. Phys. Chem. C 112 (2008) 18661–18671.
  11. J. J. Vajo, T. T. Salguero and A. F. Gross: J. Alloy. Compd. 55 (2007) 446–447.
  12. J. Yang, A. Sudik and C. Wolverton: J. Phys. Chem. C 111 (2007) 19134–19140.
  13. X. B. Yu, D. M. Grant and G. S. Walker: J. Phys. Chem. C 113 (2009) 17945–17949.
  14. Y. Zhang, W. S. Zhang and M.-Q. Fan: J. Phys. Chem. C 112 (2008) 4005–4010.
  15. J. J. Vajo, S. L. Skeith and F. J. Mertens: J. Phys. Chem. B 109 (2005) 3719–3722.
  16. U. Bosenberg, J. W. Kim, D. Gosslar, N. Eigen, T. R. Jensen et al.: Acta Mater. 58 (2010) 3381–3389.
  17. M. Q. Fan, L. X. Sun, Y. Zhang, F. Xu, J. Zhang and H. L. Chu: Int. J. Hydrogen Energy 33 (2008) 74–80.
  18. U. Bosenberg, U. Vainio, P. K. Pranzas, Bellosta von Colbe JM, G. Goerigk, E. D. M. Welter, A. Schreyer and R. Bormann: Nanotechnology 20 (2009) 204003.
  19. J. Graetz, S. Chaudhuri, T. T. Salguero, J. J. Vajo, M. S. Meyer and F. E. Pinkerton: Nanotechnology 20 (2009) 204007.
  20. X. D. Kang, P. Wang, L. P. Ma and H. M. Cheng: Appl. Phys. A 89 (2007) 963–966.
  21. G. L. Xia, Y. H. Guo and Z. Wu: J. Alloy. Compd. 479 (2009) 545–548.
  22. T. Sun, B. Zhou, H. Wang and M. Zhu: J. Alloy. Compd. 467 (2009) 413–416.


© 2011 The Japan Institute of Metals
Comments to us :