Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.627-634
© 2011 The Japan Institute of Metals

Hydrogen Storage Properties of the Mg(NH3)6Cl2-LiH Combined System

Yongfeng Liu, Ruijun Ma, Runlai Luo, Kun Luo, Mingxia Gao and Hongge Pan

State Key Laboratory of Silicon Materials & Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China

Metal ammine complexes (MACs) were recently regarded as one of promising materials for reversible hydrogen storage due to their high hydrogen content. In this work, a first attempt is conducted to elucidate the hydrogen storage reversibility by combining Mg(NH3)6Cl2 with LiH. It is found that hydrogen is gradually evolved from the combined system during ball milling. After 24 h of milling, approximate 3.5 mass% of hydrogen, equivalent to 6 mol of H2 molecules, is released from the Mg(NH3)6Cl2-18LiH mixture. Additional 3.4 mass% of hydrogen is further desorbed from the combined system milled for 24 h with a two-step reaction in heating process. Totally ∼ 12 mol of H2 molecules are librated from the Mg(NH3)6Cl2-18LiH mixture along with the formation and consumption of Mg(NH2)2 and LiNH2 in the ball milling and subsequent heating process. The resultant products consist of Li2Mg(NH)2, Li2NH, LiH and LiCl after dehydrogenation at 310°C. Further hydrogenation experiment indicates that ∼ 6 mol of H2 molecules are reversibly stored in the Mg(NH3)6Cl2-12LiH mixture.

(Received 2010/10/1; Accepted 2010/11/16; Published 2010/12/29)

Keywords: solid-state reaction, hydrogen storage, metal ammine complexes, dehydrogenation

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. L. Schlapbach and A. Züttel: Nature 414 (2001) 353–358.
  2. A. Züttel: Mater. Today 6 (2003) 24–33.
  3. U. Eberle, M. Felderhoff and F. Schüth: Angew. Chem. Int. Ed. 48 (2009) 6608–6630.
  4. P. Chen and M. Zhu: Mater. Today 11 (2008) 36–43.
  5. C. Liu, F. Li, L. P. Ma and H. M. Cheng: Adv. Mater. 22 (2010) E28–E62.
  6. B. Bogdanović and M. Schwickardi: J. Alloy. Compd. 253–254 (1997) 1–9.
  7. S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel and C. M. Jensen: Chem. Rev. 107 (2007) 4111–4132.
  8. F. Fang, S. Y. Zheng, G. R. Chen, G. Sang, B. He, S. Q. Wei and L. D. Sun: Acta Mater. 57 (2009) 1959–1965.
  9. Y. F. Liu, F. H. Wang, Y. H. Cao, M. X. Gao, H. G. Pan and Q. D. Wang: Energy Environ. Sci. 3 (2010) 645–653.
  10. T. Sun, B. Zhou, H. Wang and M. Zhu: J. Alloy. Compd. 467 (2009) 413–416.
  11. P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin and K. L. Tan: Nature 420 (2002) 302–304.
  12. Z. T. Xiong, G. T. Wu, J. J. Hu and P. Chen: Adv. Mater. 16 (2004) 1522–1525.
  13. W. F. Luo: J. Alloy. Compd. 381 (2004) 284–287.
  14. H. Y. Leng, T. Ichikawa, S. Hino, N. Hanada, S. Isobe and H. Fujii: J. Phys. Chem. B 108 (2004) 8763–8765.
  15. Y. F. Liu, K. Zhong, K. Luo, M. X. Gao, H. G. Pan and Q. D. Wang: J. Am. Chem. Soc. 131 (2009) 1862–1870.
  16. A. Züttel, P. Wenger, S. Rentsch, P. Sudan, Ph. Mauron and Ch. Emmenegger: J. Power Sources 118 (2003) 1–7.
  17. J. J. Vajo, S. L. Skeith and F. Mertens: J. Phys. Chem. B 109 (2005) 3719–3722.
  18. X. B. Yu, D. M. Grant and G. S. Walker: J. Phys. Chem. C 112 (2008) 11059–11062.
  19. P. J. Wang, L. P. Ma, Z. Z. Fang, X. D. Kang and P. Wang: Energy Environ. Sci. 2 (2009) 120–123.
  20. H. W. Li, K. Kikuchi, T. Sato, Y. Nakamori, N. Ohba, M. Aoki, K. Miwa, S. Towata and S. Orimo: Mater. Trans. 49 (2008) 2224–2228.
  21. V. M. Parvanov, G. K. Schenter, N. J. Hess, L. L. Daemen, M. Hartl, A. C. Stowe, D. M. Camaioni and T. Autrey: Dalton Trans. 33 (2008) 4514–4522.
  22. Z. T. Xiong, C. K. Yong, G. T. Wu, P. Chen, W. Shaw, A. Karkamkar, T. Autrey, M. O. Jones, S. R. Johnson, P. P. Edwards and W. I. F. David: Nature Mater. 7 (2008) 138–141.
  23. J. Z. Zhao, J. F. Shi, X. W. Zhang, F. Y. Cheng, J. Liang, Z. L. Tao and J. Chen: Adv. Mater. 22 (2010) 394–397.
  24. C. H. Christensen, R. Z. Sorensen, T. Johannessen, U. J. Quaade, K. Honkala, T. D. Elmøe, R. Køhler and J. K. Nørskov: J. Mater. Chem. 15 (2005) 4106–4108.
  25. A. Klerke, C. H. Christensen, J. K. Nørskov and T. Vegge: J. Mater. Chem. 18 (2008) 2304–2310.
  26. H. Yamamoto, H. Miyaoka, S. Hino, H. Nakanishi, T. Ichikawa and Y. Kojima: Int. J. Hydrogen Energy 34 (2009) 9760–9764.
  27. Y. H. Hu and E. Ruckenstein: J. Phys. Chem. A 107 (2003) 9737–9739.
  28. T. Markmaitree, W. Osborn and L. L. Shaw: J. Power Sources 180 (2008) 535–538.
  29. J. H. Luo, X. D. Kang and P. Wang: ChemPhysChem 11 (2010) 2152–2157.
  30. Z. T. Xiong, Y. S. Chua, G. T. Wu, W. L. Xu, P. Chen, W. Shaw, A. Karkamkar, J. Linehan, T. Smurthwaite and T. Autrey: Chem. Commun. 43 (2008) 5595–5597.
  31. M. Tsubota, S. Hino, H. Fujii, C. Oomatsu, M. Yamana, T. Ichikawa and Y. Kojima: Int. J. Hydrogen Energy 35 (2010) 2058–2062.
  32. G. M. Long, P. H. Ma, Z. M. Wu, M. Z. Li and M. C. Chu: Thermo. Acta 412 (2004) 149–153.
  33. I. C. Hwang, T. Drews and K. Seppelt: J. Am. Chem. Soc. 122 (2000) 8486–8489.
  34. A. D. Allen and C. V. Senoff: Canad. J. Chem. 45 (1967) 1337–1341.
  35. F. A. Uribe, S. Gottesfeld and T. A. Zawodzinski: J. Electrochem. Soc. 149 (2002) A293–A296.
  36. Y. Nakamura, S. Hino, T. Ichikawa, H. Fujii, H. W. Brinks and B. C. Hauback: J. Alloy. Compd. 457 (2008) 362–367.
  37. W. F. Luo and S. Sichafoose: J. Alloy. Compd. 407 (2006) 274–281.
  38. G. Sandrock: J. Alloy. Compd. 293–295 (1999) 877–888.
  39. J. J. Hu, G. T. Wu, Y. F. Liu, Z. T. Xiong, P. Chen, K. Murata, K. Sakata and G. Wolf: J. Phys. Chem. B 110 (2006) 14688–14692.
  40. Y. F. Liu, J. J. Hu, G. T. Wu, Z. T. Xiong and P. Chen: J. Phys. Chem. C 111 (2007) 19161–19164.


© 2011 The Japan Institute of Metals
Comments to us :