Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.618-622
© 2011 The Japan Institute of Metals

Synthesis and Hydrogen Storage Behaviour of Pure Mg2FeH6 at Nanoscale

Xuanzhou Zhang1,2, Wenhuai Tian1, Junzhi Yang2, Rong Yang2, Jie Zheng2 and Xingguo Li2

1Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083, P. R. China
2Beijing National Laboratory for Molecular Sciences (BNLMS), (The State Key Laboratory of Rare Earth Materials Chemistry and Applications), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China

Pure Mg2FeH6 compounds with two different morphologies have been successfully synthesized directly by mechanical milling (MM) and sintering of a mixture of 2Mg+Fe nanoparticles under an H2 atmosphere, respectively. The successful preparation of pure Mg2FeH6 can be attributed to the small particle sizes of Mg and Fe nanoparticles prepared by hydrogen plasma-metal reaction (HPMR), which provides shorter diffusion distance for hydrogen and the metals. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results show that the Mg2FeH6 synthesized by mechanical milling has larger particle size but smaller crystallite size compared with the Mg2FeH6 synthesized by sintering. The Mg2FeH6 synthesized by mechanical milling can desorb more than 4.5 mass% hydrogen in 10 min under an initial hydrogen pressure of 0.001 bar at 573 K. Compared with the Mg2FeH6 synthesized by sintering under the same conditions as the Mg2FeH6 synthesized by mechanical milling, it is suggested that decrease of crystallite size is beneficial for enhancing desorption property of Mg2FeH6.

(Received 2010/9/29; Accepted 2010/11/22; Published 2011/4/1)

Keywords: hydrogen storage, nanostructure, Mg2FeH6

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. H. Y. Shao, H. R. Xu, Y. T. Wang and X. G. Li: Nanotechnology 15 (2007) 269–274.
  2. H. Y. Shao, Y. T. Wang, H. R. Xu and X. G. Li: J. Solid State Chem. 178 (2005) 2211–2217.
  3. H. Y. Shao, H. R. Xu, Y. T. Wang and X. G. Li: J. Solid State Chem. 177 (2004) 3626–3632.
  4. X. Z. Zhang, R. Yang, J. L. Qu, W. Zhao, L. Xie, W. H. Tian and X. G. Li: Nanotechnology 21 (2010) 095706.
  5. J. J. Didisheim, P. Zolliker, K. Yvon, P. Fischer, J. Schefer, M. Gubelmann and A. F. Williams: Inorg. Chem. 23 (1984) 1953–1957.
  6. P. Selvam and K. Yvon: Int. J. Hydrogen Energy 16 (1991) 615–617.
  7. F. C. Gennari, F. J. Castro and J. J. A. Gamboa: J. Alloy. Compd. 339 (2002) 261–267.
  8. M. Herrich, N. Ismail, A. Handstein, A. Pratt and O. Gutfleisch: Mater. Sci. Eng. B 108 (2004) 28–32.
  9. J. Huot, S. Boily, E. Akiba and R. Schulz: J. Alloy. Compd. 280 (1998) 306–309.
  10. C. X. Shang, M. Bououdina and Z. X. Guo: J. Alloy. Compd. 356 (2003) 626–629.
  11. S. S. S. Raman, D. J. Davidson, J. L. Bobet and O. N. Srivastava: J. Alloy. Compd. 333 (2002) 282–290.
  12. S. Li, R. A. Varin, O. Morozova and T. Khomenko: J. Alloy. Compd. 384 (2004) 231–248.
  13. F. J. Castro and F. C. Gennari: J. Alloy. Compd. 375 (2004) 292–296.
  14. R. A. Varin, S. Li, A. Calka and D. Wexler: J. Alloy. Compd. 373 (2004) 270–286.
  15. J. Huot, H. Hayakawa and E. Akiba: J. Alloy. Compd. 248 (1997) 164–167.
  16. X. G. Li, A. Chiba and S. Takahashi: J. Magn. Magn. Mater. 170 (1997) 339–345.
  17. H. Y. Shao, Y. T. Wang, H. R. Xu and X. G. Li: Mater. Sci. Eng. B 110 (2004) 221–226.
  18. H. E. Kissinger: Anal. Chem. 29 (1957) 1702–1706.


[JIM HOME] [JOURNAL ARCHIVES]

© 2011 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp