Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.614-617
© 2011 The Japan Institute of Metals

Molecular Dynamics Study of the Particle Size Dependency of Structural Change in Hydrogenated Model f.c.c. Nanoparticles

Hiroshi Ogawa

National Institute of Advanced Industrial Science and Technology (NRI, AIST), Tsukuba 305-8568, Japan

Hydrogen absorption in f.c.c. nanoparticles of 1–8 nm diameter was investigated using molecular dynamics simulation with model interatomic potentials. Atomic configuration with five-fold symmetries was observed in both hydrogen-free and hydrogenated particles smaller than 2 nm. The f.c.c. structure was maintained in larger particles after hydrogenation in cases where the M–H interaction is weak. Lattice deformation was induced in cases of strong M–H interaction. A shift of critical size for icosahedral–cubic transition by hydrogenation was also inferred. The number of absorbed H atoms increased concomitantly with increasing particle size and M–H interaction. Most absorbed H atoms located at O-sites when M–H interaction was weak. The T-site occupancy increased with M–H interaction. Analysis using local atomic configuration revealed that structural variation in nanoparticles results from three factors: surface effects, icosahedral transformation, and lattice deformation attributable to M–H interaction.

(Received 2010/10/13; Accepted 2010/11/11; Published 2011/1/13)

Keywords: hydrogen storage, nanoparticle, molecular dynamics, icosahedral symmetry, lattice deformation, size dependency

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. T. Mutschele and R. Kirchheim: Scr. Metall. 21 (1987) 1101–1104.
  2. U. Stuhr, H. Wipf, T. J. Udovic, J. Weissmuller and H. Gleiter: J. Phys. Cond. Matter 7 (1995) 219–230.
  3. L. Zaluski, A. Zaluska and J. O. Ström-Olsen: J. Alloy. Compd. 253 (1997) 70–79.
  4. H. Natter, B. Wettmann, B. Heisel and R. Hempelmann: J. Alloy. Compd. 253 (1997) 84–86.
  5. A. Pundt, C. Sachs, M. Winter, M. T. Reetz, D. Fritsch and R. Kirchheim: J. Alloy. Compd. 293 (1999) 480–483.
  6. M. Suleiman, N. M. Jisrawi, O. Dankert, M. T. Reetz, C. Bähtz, R. Kirchheim and A. Pundt: J. Alloy. Compd. 356 (2003) 644–648.
  7. A. Pundt, M. Dornheim, M. Guerdane, H. Teichler, H. Ehrenberg, M. T. Reetz and N. M. Jisrawi: Euro. Phys. J. D 19 (2002) 333–337.
  8. T. D. Klots, B. J. Winter, E. K. Parks and S. J. Riley: Chem. Phys. 95 (1991) 8919–8930.
  9. A. Pundt and R. Kirchheim: Ann. Rev. Mater. Res. 36 (2006) 555–608.
  10. M. Yamauchi, R. Ikeda, H. Kitagawa and M. Takata: J. Phys. Chem. C 112 (2008) 3294–3299.
  11. M. Yamauchi, H. Kobayashi and H. Kitagawa: Chem. Phys. Chem. 10 (2009) 2566–2576.
  12. H. Ogawa, A. Tezuka, H. Wang, T. Ikeshoji and M. Katagiri: Mater. Trans. 49 (2008) 1983–1986.
  13. H. Ogawa, A. Tezuka, H. Wang, T. Ikeshoji and M. Katagiri: Int. J. Nanosci. 8 (2009) 39–42.
  14. H. Ogawa, M. Kayanuma and M. Katagiri: MRS Symp. Proc. 1216E (2010) W03-02.
  15. H. Ogawa: J. Alloy. Compd. in press.
  16. G. J. Ackland, G. Tichy, V. Vitek and M. W. Finnis: Phil. Mag. A 56 (1987) 735–756.
  17. M. Ruda, D. Farkas and J. Abriata: Phys. Rev. B 54 (1996) 9765–9774.
  18. R. Griessen and A. Driessen: Phys. Rev. B 30 (1984) 4372–4381.
  19. H. Ogawa: Mater. Trans. 48 (2007) 2067–2071.


© 2011 The Japan Institute of Metals
Comments to us :