Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.610-613
© 2011 The Japan Institute of Metals

Ta-W Alloy for Hydrogen Permeable Membranes

H. Yukawa1, T. Nambu2 and Y. Matsumoto3

1Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
2Department of Materials Science and Engineering, Suzuka National College of Technology, Suzuka 510-0294, Japan
3Department of Mechanical Engineering, Oita National College of Technology, Oita 870-0152, Japan

The alloying effects of tungsten on the hydrogen solubility, the resistance to hydrogen embrittlement and the hydrogen permeability are investigated for Ta-based hydrogen permeable membranes. The hydrogen solubility is found to decrease by the addition of tungsten into tantalum or by increasing the temperature. It is also found that the mechanical properties (i.e., strength and ductility) for Ta-based alloy is better than that for Nb-based alloy in hydrogen atmosphere at high temperature. It is demonstrated that the Ta-5 mol%W alloy possesses excellent hydrogen permeability without showing any hydrogen embrittlement when used under appropriate permeation conditions. For example, the hydrogen flux for Ta-5 mol%W alloy measured at 773 K under the pressure condition of inlet/outlet = 0.15/0.01 MPa is about 5 times higher than that for Pd-27 mol%Ag alloy measured at the same testing condition.

(Received 2010/9/29; Accepted 2010/11/29; Published 2011/1/13)

Keywords: hydrogen permeable membrane, hydrogen permeability, hydrogen solubility, resistance to hydrogen embrittlement, ductile-to-brittle transition hydrogen concentration (DBTC), tantalum-based alloy

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. V. Mordkovich, Y. K. Baichtock and M. Sosna: Platinum Met. Rev. 36 (1992) 90–97.
  2. S. N. Paglieri and J. D. Way: Separ. Purif. Meth. 31 (2002) 1–169.
  3. R. Buxbaum and A. Kinney: Ind. Eng. Chem. Res. 35 (1995) 530–537.
  4. C. Nishimura, M. Komaki, S. Hwang and M. Amano: J. Alloy. Compd. 330–332 (2002) 902–906.
  5. K. Hashi, K. Ishikawa, T. Matsuda and K. Aoki: Mater. Trans. 46 (2005) 1026–1031.
  6. T. Nambu, K. Shimizu, Y. Matsumoto, R. Rong, H. Yukawa, M. Morinaga and I. Yasuda: J. Alloy. Compd. 446–447 (2007) 588–592.
  7. Y. Matsumoto, H. Yukawa and T. Nambu: Metall. J. LXIII (2010) 74–78.
  8. H. Yukawa, T. Nambu and Y. Matsumoto: J. Alloy. Compd., in press.
  9. H. Yukawa, T. Nambu, Y. Matsumoto, N. Watanabe, G. X. Zhang and M. Morinaga: Mater. Trans. 49 (2008) 2202–2207.
  10. H. Yukawa, M. Morinaga, T. Nambu and Y. Matsumoto: Mater. Sci. Forum 654–656 (2010) 2827–2830.
  11. N. Watanabe, H. Yukawa, T. Nambu, Y. Matsumoto, G. X. Zhang and M. Morinaga: J. Alloy. Compd. 477 (2009) 851–854.
  12. Y. Matsumoto, M. Morinaga, T. Nambu, J. Fukumori and T. Sakai: Iron Steel Inst. Jpn. 81 (1995) 237–242.
  13. Y. Matsumoto, M. Morinaga and M. Furui: Scr. Mater. 38 (1997) 321–327.
  14. J. Kameda and O. Buck: Mater. Sci. Eng. 83 (1986) 29–38.
  15. T. Nambu, N. Shimizu, H. Ezaki, H. Yukawa and M. Morinaga: J. Jpn. Inst. Metls. 69 (2005) 841–847.
  16. E. Veleckis and R. K. Edwards: J. Phys. Chem. 73 (1969) 683–692.


© 2011 The Japan Institute of Metals
Comments to us :