Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.605-609
© 2011 Journal of Japan Research Institute for Advanced Copper-Base Materials and Technologies

Aging of Cu-3 at% Ti Alloys in Hydrogen Atmosphere: Influence of Hydrogen Pressure on Strength and Electrical Conductivity

Satoshi Semboshi1, Tomoya Nishida2 and Hiroshi Numakura2

1Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
2Department of Materials Science, Osaka Prefecture University, Sakai 599-8531, Japan

The influence of hydrogen pressure during isothermal aging on the mechanical strength, electrical conductivity, and microstructure of Cu-3 at% Ti alloys was investigated under various hydrogen pressures from 0 to 0.8 MPa. The variation of hardness with aging time was not significantly different among all specimens aged under the hydrogen pressures. This is because the hardness is improved primarily by the precipitation strengthening of Cu4Ti particles, which is less affected by hydrogen pressure. The electrical conductivity increased more significantly for specimens aged under higher hydrogen pressure, due to a rapid reduction in the concentration of Ti dissolved in the matrix, which is attributed to the accelerated formation of TiH2. The conductivity at peak-hardness was improved by a factor of approximately 1.4 in the specimens aged at both 773 and 723 K under the highest hydrogen pressure, compared to that for the specimen aged in vacuum. Therefore, aging under high hydrogen pressure assisted in the significant improvement of both strength and electrical conductivity.

(Received 2010/10/15; Accepted 2011/2/4; Published 2011/3/30)

Keywords: copper-titanium alloy, hydrogen, aging, hardness, electrical conductivity, microstructure, precipitate, transmission electron microscopy

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. A. Datta and W. A. Soffa: Acta Metall. 24 (1976) 987–1001.
  2. S. Nagarjuna, M. Srinvivas, K. Balasubramanian and D. S. Sarma: Acta Metall. 44 (1996) 2285–2293.
  3. S. Nagarjuna, M. Srinvivas, K. Balasubramanian and D. S. Sarma: Scr. Mater. 18 (1998) 1469–1474.
  4. W. A. Soffa and D. E. Laughlin: Prog. Mater. Sci. 49 (2004) 347–366.
  5. S. Nagarjuna, K. Balasubramanian and D. S. Sarma: Mater. Sci. Eng. A 225 (1997) 118–124.
  6. S. Suzuki, K. Hirabayashi, H. Shibata, K. Mimura, M. Isshiki and Y. Waseda: Scr. Mater. 48 (2003) 431–435.
  7. S. Semboshi and T. J. Konno: J. Mater. Res. 23 (2008) 473–477.
  8. S. Semboshi, T. Nishida and H. Numakura: Mater. Sci. Eng. A 517 (2009) 105–113.
  9. S. Semboshi, T. Nishida, H. Numakura, T. Al-Kassaab and R. Kirchheim: Metall. Mater. Trans. A in press.
  10. A. Colombo: Anal. Chim. Acta 72 (1974) 401–406.
  11. W. E. Krull and R. W. Newman: J. Appl. Cryst. 3 (1970) 519–521.
  12. T. J. Konno, R. Nishio, S. Semboshi, T. Ohsuna and E. Okunishi: J. Mater. Sci. 43 (2008) 3761–3768.
  13. S. B. Qadri, E. F. Skelton, M. Nagumo, A. W. Webb, F. E. Lynch and R. W. Marmaro: Phys. Rev. B 49 (1992) 1193–1194.
  14. W. E. Wang: J. Alloy. Compd. 238 (1996) 6–12.
  15. J. Y. Brun, S. J. Hamar-Thibault and C. H. Allibert: Z. Metallkd. 74 (1983) 525–529.
  16. J. Miyake and M. E. Fine: Acta Metall. 40 (1992) 733–741.


© 2011 The Japan Institute of Metals
Comments to us :