Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.602-604
© 2011 The Japan Institute of Metals

Hydrogenation of Al3Ti at High Pressure and High Temperature

Hiroyuki Saitoh, Akihiko Machida, Yoshinori Katayama and Katsutoshi Aoki

Condensed Matter Science Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Sayo-gun, Hyogo 679-5148, Japan

An Al3Ti alloy was immersed in hydrogen at high pressures and high temperatures. An anomalous expansion of the Al3Ti metal lattice was observed by in situ powder X-ray diffraction measurements at 625°C and 10 GPa, suggesting that Al3Ti is hydrogenated to form Al3TiHx. The hydrogen content is roughly estimated to be x∼ 0.4. However, the formed hydride phase is dehydrogenated during depressurization, and cannot be recovered at ambient conditions.

(Received 2010/9/29; Accepted 2010/10/19; Published 2010/12/1)

Keywords: aluminum-titanium-hydride, high pressure and high temperature

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. G. Sandrock, J. Reilly, J. Graetz, W.-M. Zhou, J. Johnson and J. Wegrzyn: J. Alloy. Compd. 421 (2006) 185–189.
  2. J. Graetz, J. J. Reilly, J. G. Kulleck and R. C. Bowman: J. Alloy. Compd. 446–447 (2007) 271–275.
  3. S. Orimo, Y. Nakamori, T. Kato, C. Brown and C. M. Jensen: Appl. Phys. A 83 (2006) 5–8.
  4. R. Zidan, B. L. Garcia-Diaz, C. S. Fewox, A. C. Stowe, J. R. Gray and A. G. Harter: Chem. Commun. (2009) 3717–3719.
  5. K. Ikeda, S. Muto, K. Tatsumi, M. Menjo, S. Kato, M. Bielmann, A. Züttel, C. M. Jensen and S. Orimo: Nanotechnology 20 (2009) 204004.
  6. S. Kato, M. Bielmann, K. Ikeda, S. Orimo, A. Borgschulte and A. Züttel: Appl. Phys. Lett. 96 (2010) 051912_1–051912_3.
  7. H. Saitoh, A. Machida, Y. Katayama and K. Aoki: Appl. Phys. Lett. 93 (2008) 151918_1–151918_3.
  8. H. Saitoh, A. Machida, Y. Katayama and K. Aoki: Appl. Phys. Lett. 94 (2009) 151915_1–151915_3.
  9. H. Saitoh, Y. Okajima, Y. Yoneda, A. Machida, D. Kawana, T. Watanuki, Y. Katayama and K. Aoki: J. Alloy. Compd. 496 (2010) L25–L28.
  10. V. Iosub, T. Matsunaga, K. Tange, M. Ishikiriyama and K. Miwa: J. Alloy. Compd. 484 (2009) 426–430.
  11. F. Gingl, T. Vogt and E. Akiba: J. Alloy. Compd. 306 (2000) 127–132.
  12. K. Ikeda, N. Watanabe, S. Kato, T. Sato, Y. Nakamori and S. Orimo: J. Alloy. Compd. 471 (2009) L13–L15.
  13. P. Norby and A. Nørlund Christensen: Acta Chem. Scand. A 40 (1986) 157–159.
  14. W. Utsumi, K. Funakoshi, Y. Katayama, M. Yamakata, T. Okada and O. Shimomura: J. Phys. Condens. Matter 14 (2002) 10497–10504.
  15. A. Kamegawa, Y. Goto, R. Kataoka, H. Takamura and M. Okada: Renewable Energy 33 (2008) 221–225.
  16. Y. Fukai and N. Okuma: Jpn. J. Appl. Phys. 32 (1993) L1256–L1259.
  17. R. Boulechfar, S. Ghemid, H. Meradji and B. Bouhafs: Phys. B 405 (2010) 4045–4050.
  18. M. Nakamura and K. Kimura: J. Mater. Sci. 26 (1991) 2208–2214.
  19. R. Burtovyy and M. Tkacz: Solid State Commun. 131 (2004) 169–173.


© 2011 The Japan Institute of Metals
Comments to us :