Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.595-597
© 2011 The Japan Institute of Metals

In Situ X-ray Diffraction Measurements of Aluminum Pulverization prior to the Hydrogenation Reaction

Hiroyuki Saitoh1, Yuka Okajima2, Yasuhiro Yoneda1, Akihiko Machida1, Yoshinori Katayama1 and Katsutoshi Aoki1

1Condensed Matter Science Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Sayo-gun, Hyogo 679-5148, Japan
2SPring-8 Service Co. Ltd., Sayo-gun, Hyogo 679-5148, Japan

The hydrogenation process of aluminum, especially pulverization of aluminum prior to the hydrogenation reaction was investigated by in situ synchrotron radiation X-ray diffraction measurements at high pressure and high temperature. Changes in the crystal grain sizes during the hydrogenation process were observed using the angle dispersive method, while weak Bragg peaks from aluminum and AlH3 with small X-ray scattering factors were detected using focused monochromatic X-rays as the incident beam. The in situ measurement system monitored the pulverization of aluminum at several pressure-temperature conditions where AlH3 was thermodynamically stable.

(Received 2010/10/1; Accepted 2010/10/28; Published 2010/12/15)

Keywords: aluminum hydride, high pressure and high temperature, in situ observation

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. G. Sandrock, J. Reilly, J. Graetz, W.-M. Zhou, J. Johnson and J. Wegrzyn: J. Alloy. Compd. 421 (2006) 185–189.
  2. J. Graetz, J. J. Reilly, J. G. Kulleck and R. C. Bowman: J. Alloy. Compd. 446–447 (2007) 271–275.
  3. S. Orimo, Y. Nakamori, T. Kato, C. Brown and C. M. Jensen: Appl. Phys. A 83 (2006) 5–8.
  4. R. Zidan, B. L. Garcia-Diaz, C. S. Fewox, A. C. Stowe, J. R. Gray and A. G. Harter: Chem. Commun. (2009) 3717–3719.
  5. K. Ikeda, S. Muto, K. Tatsumi, M. Menjo, S. Kato, M. Bielmann, A. Züttel, C. M. Jensen and S. Orimo: Nanotechnology 20 (2009) 204004-1–4.
  6. F. M. Brower, N. E. Matzek, P. F. Reigler, H. W. Rinn, C. B. Roberts, D. L. Schmidt, J. A. Snover and K. Terada: J. Am. Chem. Soc. 98 (1976) 2450–2453.
  7. H. Saitoh, A. Machida, Y. Katayama and K. Aoki: Appl. Phys. Lett. 93 (2008) 151918-1–3.
  8. H. Saitoh, A. Machida, Y. Katayama and K. Aoki: Appl. Phys. Lett. 94 (2009) 151915-1–3.
  9. H. Saitoh, Y. Okajima, Y. Yoneda, A. Machida, D. Kawana, T. Watanuki, Y. Katayama and K. Aoki: J. Alloy. Compd. 496 (2010) L25–L28.
  10. Y. Fukai and N. Okuma: Jpn. J. Appl. Phys. 32 (1993) L1256–L1259.
  11. A. Kamegawa, Y. Goto, R. Kataoka, H. Takamura and M. Okada: Renewable Energy 33 (2008) 221–225.
  12. T. Hattori, H. Saitoh, H. Kaneko, Y. Okajima, K. Aoki and W. Utsumi: Phys. Rev. Lett. 96 (2006) 255504-1–4.
  13. Y. Yoneda, N. Matsumoto, Y. Furukawa and T. Ishikawa: J. Synchrotron Rad. 8 (2001) 18–21.
  14. The lattice expansion of aluminum metal was measured only at pressure-temperature conditions where AlH3 was thermodynamically stable (below the hydrogenation curve shown in Fig. 4). Thus, it is not clarified whether the solid solution phase presents above the hydrogenation curve.


[JIM HOME] [JOURNAL ARCHIVES]

© 2011 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp