Materials Transactions Online

Materials Transactions, Vol.52 No.04 (2011) pp.586-590
© 2011 The Japan Institute of Metals

Phase Transformation and Lattice-Strain Formation in Ti1.0V1.1Mn0.9 during First Absorption and Desorption

Saishun Yamazaki, Jin Nakamura, Kouji Sakaki, Yumiko Nakamura and Etsuo Akiba

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan

We used powder X-ray diffraction (XRD) and Rietveld refinement to study phase transformation and the lattice strain introduced into each hydride phase of Ti1.0V1.1Mn0.9 during first absorption and desorption. Hydrogenation proceeded from a solid-solution phase to a dihydride phase via a monohydride phase. Each single-phase region was observed beside two clear plateau regions on the pressure–composition (P–C) isotherm. In contrast, the desorption P–C isotherm showed only one clear plateau, corresponding to a two-phase region of the dihydride and the monohydride. The plateau was connected to a two-phase region of the monohydride and a solid-solution phase, and to another region of solid-solution phases. The monohydride single-phase region was not clearly observed during desorption. Isotropic lattice strain was introduced, and increased with phase transformation during the first absorption. The strain increased further in the subsequent phase transformation during desorption, particularly upon formation of a solid-solution phase.

(Received 2010/10/4; Accepted 2010/12/16; Published 2011/4/1)

Keywords: hydrogen storage, BCC solid-solution alloy, phase transformation, lattice strain, X-ray diffraction

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. J. Huot, E. Akiba and H. Iba: J. Alloy. Compd. 231 (1995) 181–187.
  2. H. Iba and E. Akiba: J. Alloy. Compd. 231 (1995) 508–512.
  3. E. Akiba and H. Iba: Intermetallics 6 (1998) 461–470.
  4. Y. Nakamura and E. Akiba: J. Alloy. Compd. 311 (2000) 317–321.
  5. Y. Nakamura and E. Akiba: J. Alloy. Compd. 345 (2002) 175–182.
  6. Y. Nakamura and E. Akiba: J. Alloy. Compd. 308 (2000) 309–318.
  7. Y. Nakamura, K. Oguro, I. Uehara and E. Akiba: J. Alloy. Compd. 298 (2000) 138–145.
  8. M. P. Pitt, E. MacA. Gray, E. H. Kisi and B. A. Hunter: J. Alloy. Compd. 293–295 (1999) 118–123.
  9. R. Černý, J.-M. Joubert, M. Latroche, A. Percheron-Guégan and K. Yvon: J. Appl. Crystallogr. 33 (2000) 997–1005.
  10. K. Sakaki, H. Araki and Y. Shirai: Mater. Trans. 43 (2002) 1494–1497.
  11. Y. Shirai, H. Araki, T. Mori, W. Nakamura and K. Sakaki: J. Alloy. Compd. 330–332 (2002) 125–131.
  12. H. Inui, T. Yamamoto, M. Hirota and M. Yamaguchi: J. Alloy. Compd. 330–332 (2002) 117–124.
  13. B. Décamps, J.-M. Joubert, R. Cerny and A. Percheron-Guégan: J. Alloy. Compd. 404–406 (2005) 570–575.
  14. F. Izumi and T. Ikeda: Mater. Sci. Forum 321–324 (2000) 198–203.
  15. P. Thompson, D. E. Cox and J. B. Hastings: J. Appl. Crystallogr. 20 (1987) 79–83.
  16. A. C. Larson and R. B. Von Dreele: GSAS–General Structure Analysis System, Report No.LAUR 86-748, (Los Alamos National Laboratory, Los Alamos, 1994) pp.127–138.
  17. J. Matsuda, K. Asano, Y. Nakamura and E. Akiba: Abstracts of the Spring Meeting of the Japan Institute of Metals, (2010) p.231 (in Japanese).


[JIM HOME] [JOURNAL ARCHIVES]

© 2011 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp