Materials Transactions Online

Materials Transactions, Vol.50 No.05 (2009) pp.994-998
© 2009 The Japan Institute of Metals

An FDTD Analysis of Nanostructured Electromagnetic Metamaterials Using Parallel Computer

Ryosuke Umeda, Chieko Totsuji, Kenji Tsuruta and Hiroo Totsuji

Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan

Metamaterial with negative permittivity and permeability is studied by means of computer simulations. We analyze the electromagnetic response of nanostructured metamaterials to evanescent waves at optical frequency via the finite-difference time-domain simulatioins on parallel computer. Effects of the nanostructure on dielectric and magnetic properties are taken into account by introducing the Drude-Lorentz model in the materials dispersion. Size effect on the dispersion is examined by comparing the model with that of a noble metal particle. A re-focusing and an amplification of the evanescent waves propagating through a metamaterial, consisting of metal slabs/vacuum stacking, are demonstrated for the frequency range at 614–744 THz. By properly treating the materials dispersion, we show that the nanostructured metamaterial may behave as a left-handed material in the optical range.

(Received 2008/11/7; Accepted 2009/2/20; Published 2009/4/15)

Keywords: finite-difference time-domain method, metamaterial, nanostructure, evanescent wave

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. J. B. Pendry: Phys. Rev. Lett. 85 (2000) 3966–3969.
  2. R. W. Ziolkowski: Phys. Rev. E 64 (2001) 056625-1–056625-15.
  3. Z. Liu, H. Lee, Y. Xiong, C. Sun and X. Zhang: Science 315 (2007) 1686.
  4. J. B. Pendry and D. R. Smith: Physics Today 57 (2004) 37–43.
  5. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal and X. Zhang: Nature 455 (2008) 07247-1–07247-5.
  6. A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi and M. Lamy: Phys. Rev. B 71 (2005) 085416-1–085416-5.
  7. P. B. Johnson and R. W. Christy: Phys. Rev. B 6 (1972) 4370–4379.
  8. U. Kreibig and M. Vollmer: Optical Properties of Metal Clusters, (Springer Series. Materials Science, vol.25, Springer,. Berlin 1995) pp.79–99.
  9. U. Kreibig: J. Phys. C 2 (1977) 97–103.
  10. A. Taflove and S. C. Hagness: Computational Electrodynamics: The Finite-Difference Time-Domain Mtehod, (Artech House, Inc., Norwood, MA, 2003) pp.361–368.
  11. T. Uno: Finite Difference Time Domain Method for Electromagnetic Field and Antennas, (Corona Publishing CO., LTD, JP, 2000) pp.194–208.
  12. K.-M. Chae, H.-H. Lee, S.-Y. Yim and S.-H. Park: Opt. Express 12 (2004) 2870–2879.


© 2009 The Japan Institute of Metals
Comments to us :