Materials Transactions Online

Materials Transactions, Vol.50 No.05 (2009) pp.1225-1230
© 2009 The Japan Institute of Metals

Dissolution of Magnesium from Serpentine Mineral in Sulfuric Acid Solution

Kyoungkeun Yoo, Byung-Su Kim, Min-Seuk Kim, Jae-chun Lee and Jinki Jeong

Minerals & Materials Processing Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 305-350, Korea

As the volume of CO2, one of greenhouse gases linked to global warming, in the atmosphere increases, there has been an increasing interest in CO2 sequestration. Aqueous carbonation, which involves the extraction of Mg from serpentine minerals and the subsequent carbonation reaction with CO2 to form the geologically stable mineral MgCO3, has been proposed as a promising CO2 sequestration technology. This study investigates the dissolution of Mg from serpentine mineral in H2SO4 solution. The study is part of a major research project aimed at developing an effective CO2 sequestration technology using the serpentine mineral which is readily available in Korea. Complete dissolution of Mg from natural serpentine was achieved in 30 min at a temperature of 90°C under 0.5 M H2SO4. The rate of dissolution of Mg was independent of the agitation speed at speeds above 300 rpm. The fraction of Mg dissolved from milled serpentine was found to be a little higher than that from natural serpentine up to 70°C in 0.5 M H2SO4. The Jander equation was used to explain the dissolution rate data. The rate of Mg dissolution seemed to be limited by diffusion through the thin channels formed between the silica layers in the serpentine particles.

(Received 2009/1/16; Accepted 2009/3/11; Published 2009/4/22)

Keywords: carbon dioxide sequestration, mineral carbonation, serpentine, magnesium, Jander equation

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. F. J. Wicks and D. S. O'Hanley: Serpentine Minerals: Structures and Petrology in Hydrous Phyllosilicates, Bailey, S. W. Ed., Reviews in Mineralogy 19, (Mineralogical Society of America, VA, USA, 1988) pp.91–167.
  2. S. Y. Choi, J. Y. Hwang, J. J. Kim and Y. J. Lee: J. Geolo. Soc. Korea 26 (1990) 105–118 (in Korean).
  3. T. T. Chen, J. E. Dutrizac and C. W. White: JOM 52 (2000) 20–22.
  4. J. Y. Hwang: Miner. Industry 15 (2002) 48–54 (in Korean).
  5. P. W. Harben and C. Smith Jr.: Industrial Minerals and Rocks; Commodities, Markets and Uses, (SME, Littleton, CO, USA, 2006) pp.679–683.
  6. F. L. Pundsack: Recovery of silica, iron oxide and magnesium carbonate from the treatment of serpentine with ammonium bisulfate, US Patent No.3,338,667, (1967).
  7. P. Ficara, E. Chin, T. Walker, D. Laroche, E. Palumbo and C. Celik: CIM Bull. 91 (1998) 75–80.
  8. K. Kosuge, K. Shimada and A. Tsunashima: Chem. Mater. 7 (1995) 2241–2246.
  9. D. J. Kim, H. S. Chung, J.-C. Lee, I. H. Kim and J. H. Lee: J. Korean Assoc. Crystal Growth 10 (2000) 73–79 (in Korean).
  10. R. Zevenhoven, J. Kohlmann and A. B. Mukherjee: Proc. 27th Int. Tech. Conf. on Coal Utilization & Fuel Systems, (Clearwater, FL, UAS, 2002) pp.743–754.
  11. W. J. J. Huijgen and R. N. J. Comans: Carbon dioxide sequestration by mineral carbonation, (Literature Review. Energy Research Center of the Netherlands, Petten, The Netherlands, 2003) ECN-C-03-016.
  12. K. S. Lackner: Science 300 (2003) 1677–1678.
  13. A.-H. Park, R. Jadhav and L.-S. Fan: Can. J. Chem. Eng. 81 (2003) 885–890.
  14. M. M. Maroto-Valer, Y. Zhang, M. E. Kuchta, J. M. Andrésen and D. J. Fauth: Process for sequestering carbon dioxide and sulphur dioxide, US Patent US2005/0002847, (2005).
  15. C. I. Apostolidis and P. A. Distin: Hydrometallurgy 3 (1978) 181–196.
  16. M. F. R. Fouda, R. E.-S. Amin and M. M. Abd-Elzaher: Bull. Chem. Soc. Jpn. 69 (1996) 1907–1912.
  17. M. F. R. Fouda, R. E.-S. Amin and M. M. Abd-Elzaher: Bull. Chem. Soc. Jpn. 69 (1996) 1913–1916.
  18. S. Teir, H. Revitzer, S. Eloneva, C.-J. Fogelholm and R. Zevenhoven: Int. J. Miner. Proc. 83 (2007) 36–46.
  19. L. G. Hernández, L. I. Rueda, A. R. Díaz and C. C. Antón: J. Colloid. Interf. Sci. 109 (1986) 150–160.
  20. A. Awad, A. F. Koster Van Groos and S. Guggenheim: Geochim. Cosmochim. Acta 64 (2000) 1765–1772.
  21. Q. Zhang, K. Sugiyama and F. Saito: Hydrometallurgy 45 (1997) 323–331.
  22. H. Y. Sohn: Metall. Trans. B 9B (1978) 89–96.
  23. Y. Paspaliaris and Y. Tsolakis: Hydrometallurgy 19 (1987) 259–266.


© 2009 The Japan Institute of Metals
Comments to us :