Materials Transactions Online

Materials Transactions, Vol.50 No.05 (2009) pp.1196-1201
© 2009 The Mining and Materials Processing Institute of Japan

Coprecipitation of Large Scorodite Particles from Aqueous Fe(II) and As(V) Solution by Oxygen Injection

Kozo Shinoda1, Takenori Tanno1, Tetsuo Fujita2 and Shigeru Suzuki1

1Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
2Technical Research Center, Dowa Metals and Mining Co., Ltd., Akita 011-0911, Japan

A novel method for synthesizing large scorodite (FeAsO4·2H2O) particles was recently developed for the fixation of arsenic. This method involves the coprecipitation of scorodite particles from an Fe(II) and As(V) aqueous solution at approximately 95°C by oxygen injection. In order to understand the process of coprecipitation of scorodite particles by this method, X-ray diffractometry (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used for characterizing reaction products extracted from the suspension during the reaction. The SEM observation showed that the formation of large scorodite particles was almost completed after a reaction time of 3 h, and then, fine particles precipitated on the large particles by further reactions. The XRD results indicated that scorodite particles with specific lattice parameters were formed in the reaction. The XPS results indicated that the arsenic composition on the surface of the scorodite particles decreased until 3 h from the start of precipitation reaction and increased thereafter. These results correspond to the results on the morphology of the scorodite particles obtained by SEM. Furthermore, X-ray absorption spectra (XAS) in the range of X-ray absorption near edge structure (XANES) were measured for gel-like reaction products formed in the initial stages of the reaction. The spectra revealed that the gel-like reaction products were composed of Fe(II) and Fe(III). The coprecipitation of scorodite particles synthesized by the novel method is discussed on the basis of these results together with previous results on the analyses of iron and arsenic concentrations in solution.

(Received 2008/10/30; Accepted 2009/2/8; Published 2009/4/8)

Keywords: scorodite, Fe(II), As(V), coprecipitation, oxidation

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. E. Krause and V. A. Ettel: Hydrometallurgy 22 (1989) 311–337.
  2. E. Virčíková, L. Molnár, P. Lech and E. Reitznerová: Hydrometallurgy 38 (1995) 111–123.
  3. N. J. Welham, K. A. Malatt and S. Vukcevic: Minerals Eng. 13 (2000) 911–931.
  4. D. Langmuir, J. Mahoney and J. Rowson: Geochimica et Cosmochimica Acta 70 (2006) 2942–2956.
  5. M.-C. Bluteau and G. P. Demopoulos: Hydrometallurgy 87 (2007) 163–177.
  6. F. Frau, R. Biddau and L. Fanfani: Appl. Geochem. 23 (2008) 1451–1466.
  7. M. A. McKibben, B. A. Tallant and J. K. del Angel: Appl. Geochem. 23 (2008) 121–135.
  8. B. W. Vink: Chemical Geology 130 (1996) 21–30.
  9. D. Paktunc, J. Dutrizac and V. Gertsman: Geochimica et Cosmochimica Acta 72 (2008) 2649–2672.
  10. G. A. Waychunas, B. A. Rea, C. C. Fuller and J. A. Davis: Geochimica et Cosmochimica Acta 57 (1993) 2251–2269.
  11. C. C. Fuller, J. A. Davis and G. A. Waychunas: Geochimica et Cosmochimica Acta 57 (1993) 2271–2282.
  12. B. Daus, H. Weiß and R. Wennrich: Talanta 46 (1998) 867–873.
  13. D. Paktunc, A. Foster, S. Heald and G. Laflamme: Geochimica et Cosmochimica Acta 68 (2004) 969–983.
  14. K. S. Savage, D. K. Bird and P. A. O'Day: Chemical Geology 215 (2005) 473–498.
  15. Y. Jia, L. Xu, X. Wang and G. P. Demopoulos: Geochimica et Cosmochimica Acta 71 (2007) 1643–1654.
  16. G. P. Demopoulos, D. J. Droppert and G. Van Weert: Hydrometallurgy 38 (1995) 245–261.
  17. J. F. Le Berre, R. Gauvin and G. P. Demopoulos: Colloid. Surf. A Physicochem. Eng. Aspects 315 (2008) 117–129.
  18. M. L. Caetano, V. S. T. Ciminelli, S. D. F. Rocha, M. C. Spitale and C. L. Caldeira: Hydrometallurgy 95 (2009) 44–52.
  19. J. E. Dutrizac and J. L. Jambor: Hydrometallurgy 19 (1988) 377–384.
  20. T. Fujita, R. Taguchi, M. Abumiya, M. Matsumoto, E. Shibata and T. Nakamura: Hydrometallurgy 90 (2008) 85–91.
  21. T. Fujita, R. Taguchi, M. Abumiya, M. Matsumoto, E. Shibata and T. Nakamura: Hydrometallurgy 90 (2008) 92–102.
  22. T. Fujita, R. Taguchi, M. Abumiya, M. Matsumoto, E. Shibata and T. Nakamura: Hydrometallurgy 93 (2008) 30–38.
  23. G. S. Pawley: J. Appl. Cryst. 14 (1981) 357–361.
  24. T. Taguchi, J. Harada, K. Tohji and K. Shinoda: Advances in X-ray Anal. 45 (2002) 397.
  25. K. Kitahama, R. Kiriyama and Y. Baba: Acta Cryst. B 31 (1975) 322–324.
  26. Y. Waseda and S. Suzuki: Characterization of Corrosion Products on Steel Surfaces, (Springer-Verlag, Heidelberg, 2005).
  27. S.-K. Kwon, K. Kimijima, K. Kanie, S. Suzuki, A. Muramatsu, M. Saito, K. Shinoda and Y. Waseda: Corros. Sci. 49 (2007) 2946–2961.
  28. K. Inoue, M. Okui, M. Tanaka, K. Shinoda, S. Suzuki and Y. Waseda: Corros. Sci. 50 (2008) 811–817.


© 2009 The Japan Institute of Metals
Comments to us :