Materials Transactions Online

Materials Transactions, Vol.50 No.05 (2009) pp.1179-1182
© 2009 The Japan Institute of Metals

High Pressure Synthesis of Novel Mg(Ni1-xCux)2 Hydrides (x = 0–0.2)

Riki Kataoka, Atsunori Kamegawa, Hitoshi Takamura and Masuo Okada

Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan

In our previous papers, we have reported the hydrogenation of MgNi2 with C36-type structure under GPa-order hydrogen pressure. In this paper, the effect of Cu substitution in MgNi2 was studied on the crystal structures, thermal stabilities and hydrogen contents of Mg(Ni1-xCux)2 hydrides (x = 0–0.2). The hydrides were obtained by high pressure synthesis using cubic-anvil-type apparatus at 973 K for 8 h under 5 GPa. The hydrides were found to have primitive orthorhombic (Pmmm, x = 0.0–0.1) and body-centered tetragonal structures (I4/mmm, x = 0.15–0.2). Their hydrogen contents were estimated to be 2.23–2.32 mass%. Dehydrogenation temperature decreased from 460 K (x = 0.0) to 429 K (x = 0.20) with increasing amount of Cu substitution. After dehydrogenation, the C36-type phase was observed by X-ray diffraction (XRD). Consequently, it is noteworthy that Mg(Ni1-xCux)2 could be hydrogenated reversibly without disproportionation under high pressure of the order of gigapascals.

(Received 2008/12/8; Accepted 2009/2/20; Published 2009/4/8)

Keywords: magnesium, hydride, high pressure synthesis, MgNi2, Mg(Ni1-xCux)2, hydrogen storage alloys

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. S. Orimo, H. Fujii and K. Ikeda: Acta Mater. 45 (1997) 331–341.
  2. M. Herrich, N. Ismail, J. Lyubia, A. Pratt and O. Gutfleisch: Mater. Sci. Eng. B 108 (2004) 28–32.
  3. B. Bertheville, P. Fischer and K. Yvon: J. Alloy. Compd. 330–332 (2002) 152–156.
  4. F. Gingl, K. Yvon, T. Vogt and A. Hewat: J. Alloy. Compd. 253–254 (1999) 125–129.
  5. M. Bortz, B. Bertheville, K. Yvon, E. A. Movlaev, V. N. Verbetsky and F. Fauth: J. Alloy. Compd. 279 (1998) L8–L10.
  6. B. Bertheville and K. Yvon: J. Alloy. Compd. 288 (1999) 197–199.
  7. H. Kakuta, A. Kamegawa, H. Takamura and M. Okada: Mater. Sci. Forum 350–351 (2000) 329–332.
  8. H. Takamura, H. Kakuta, A. Kamegawa and M. Okada: J. Alloy. Compd. 330–332 (2002) 157–161.
  9. Y. Goto, H. Kakuta, A. Kamegawa, H. Takamura and M. Okada: Sci. Technol. Adv. Mater. 4 (2003) 333–338.
  10. H. Takamura, H. Kakuta, Y. Goto, A. Kamegawa and M. Okada: Mater. Trans. 42 (2001) 1301–1304.
  11. Y. Goto, H. Kakuta, A. Kamegawa, H. Takamura and M. Okada: Mater. Trans. 42 (2001) 1850–1853.
  12. Y. Goto, H. Kakuta, A. Kamegawa, H. Takamura and M. Okada: PRICM4, JIM (2001) pp.1219–1222.
  13. Y. Goto, A. Kamegawa, H. Takamura and M. Okada: Mater. Trans. 43 (2002) 2717–2720.
  14. H. Watanabe, Y. Goto, H. Kakuta, A. Kamegawa and M. Okada: Mater. Trans. 45 (2004) 1350–1354.
  15. R. Kataoka, Y. Goto, A. Kamegawa, H. Takamura and M. Okada: Mater. Trans. 47 (2006) 1957–1960.
  16. R. Kataoka, Y. Goto, A. Kamegawa, H. Takamura and M. Okada: J. Alloy. Compd. 446–447 (2007) 142–146.
  17. Y. Takagi, T. Taniguchi and K. Hori: J. Ceram. Soc. Jpn. Inter. Ed. 101 (1993) 373.


[JIM HOME] [JOURNAL ARCHIVES]

© 2009 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp